The objective of this paper is to use plant-wide modeling to assess the net impacts of varying sludge management strategies. Special emphasis is placed on effluent quality, operational cost and potential resource recovery (energy, nutrients). The study is particularly focused on a centralized bio-solids beneficiation facility (BBF), which enables larger, more capital intensive sludge management strategies. Potential barriers include the ability to process reject streams from multiple donor plants in the host plant. Cape Flats (CF) wastewater treatment works (WWTW) (Cape Town, South Africa) was used as a relevant test case since it is currently assessing to process sludge cake from three nearby facilities (Athlone, Mitchells Plain and Wildevoelvlei). A plant-wide model based on the Benchmark Simulation Model no 2 (BSM2) extended with phosphorus transformations was adapted to the CF design / operational conditions. Flow diagram and model parameters were adjusted to reproduce the influent, effluent and process characteristics. Historical data between January 2014 and December 2019 was used to compare full-scale measurements and predictions. Next, different process intensification / mitigation technologies were evaluated using multiple criteria. Simulation values for COD, TSS, VSS/TSS ratio, TN, TP, NH/NH, HPO4, NO alkalinity and pH fall within the interquartile ranges of measured data. The effects of the 2017 severe drought on influent variations and biological phosphorus removal are successfully reproduced for the entire period with dynamic simulations. Indeed, 80% of all dynamically simulated values are included within the plant measurement uncertainty ranges. Sludge management analysis reveals that flow diagrams with thermal hydrolysis pre-treatment (THP) result in a better energy balance in spite of having higher heat demands. The flow diagram with THP is able to i) increase biodegradability/solubility, ii) handle higher sludge loads, iii) change methanogenic microbial population and iv) generate lower solids volumes to dispose by improving sludge dewaterability. The study also reveals the importance of including struvite precipitation and harvesting (SPH) technology, and the effect that pH in the AD and the use of chemicals (NaOH, MgO) may have on phosphorus recovery. Model-based results indicate that the current aerobic volume in the water line (if properly aerated) would be able to handle the returns from the sludge line and the contribution of a granular partial nitritation/Anammox (PN/ANX) reactor on the overall nitrogen removal would be marginal. However autotrophic N denitrification generates a much lower sludge production and therefore increases AD treatment capacity. The study shows for the very first time in Africa how the use of a (calibrated) plant-wide model could assist water utilities to decide between competing plant layouts when upgrading a WWTW.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116714DOI Listing

Publication Analysis

Top Keywords

sludge management
16
management strategies
12
wastewater treatment
8
sludge
8
plant-wide model
8
flow diagram
8
assessment sludge
4
management
4
strategies wastewater
4
treatment systems
4

Similar Publications

In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.

View Article and Find Full Text PDF

Waste activated sludge (WAS) pose a potential risk for the spread of antibiotic resistance genes (ARGs). This study estimated the effect of sludge on antibiotic resistance genes (ARGs) in anaerobic sludge digestion process. Metagenomic analysis revealed anaerobic sludge with potassium ferrate (PF) and the modified PF loaded steel slag (MPF-SS) brought an increase of ARGs during digestion process.

View Article and Find Full Text PDF

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF

Granite sludge dust (GSD), a significant byproduct of granite processing globally, poses severe environmental and public health challenges, with India alone generating 200 million tons annually. The conventional use of GSD in soil stabilization and construction materials is limited to 20-30%, underscoring the urgent need for sustainable repurposing solutions within the circular economy catering to broader bulk utilization. Unlike traditional techniques, repurposing granite dust using microbially induced calcite precipitation (MICP) offers a sustainable low-impact and eco-friendly ground improvement solution.

View Article and Find Full Text PDF

The urgent need to address escalating environmental pollution and energy management challenges has underscored the importance of developing efficient, cost-effective, and multifunctional electrocatalysts. To address these issues, we developed an eco-friendly, cost-effective, and multifunctional electrocatalyst a solvothermal synthesis approach. Due to the merits of the ideal synthesis procedure, the FeCoHS@NF electrocatalyst exhibited multifunctional activities, like OER, HER, OWS, UOR, OUS, and overall alkaline seawater splitting, with required potentials of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!