Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy.

Biomaterials

Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD, 4059, Australia; Australian Research Council (ARC) Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia. Electronic address:

Published: January 2021

Biomimetically designed medical-grade polycaprolactone (mPCL) dressings are 3D-printed with pore architecture and anisotropic mechanical characteristics that favor skin wound healing with reduced scarring. Melt electrowritten mPCL dressings are seeded with human gingival tissue multipotent mesenchymal stem/stromal cells and cryopreserved using a clinically approved method. The regenerative potential of fresh or frozen cell-seeded mPCL dressing is compared in a splinted full-thickness excisional wound in a rat model over six weeks. The application of 3D-printed mPCL dressings decreased wound contracture and significantly improved skin regeneration through granulation and re-epithelialization compared to control groups. Combining 3D-printed biomimetic wound dressings and precursor cell delivery enhances physiological wound closure with reduced scar tissue formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2020.120558DOI Listing

Publication Analysis

Top Keywords

mpcl dressings
12
biomimetic wound
8
wound dressings
8
wound
6
dressings
5
convergence printed
4
printed biomimetic
4
dressings adult
4
adult stem
4
stem cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!