Background: Hepatocellular carcinoma (HCC) is characterized by marked phenotypic and molecular heterogeneity. Clinico-morphologic phenotypes and associations are important surrogate markers of molecular aberrations; therefore have immense relevance for targeted therapy. There is paucity of published literature on critical analysis of HCC heterogeneity and morphological alliance.

Aims: To assess the heterogeneity and dominance of histomorphological features, and to explore clinicopathological associations in HCC.

Methods: Retrospective cross-sectional study of 217 HCC tissue specimens was performed for the assessment of prevalence of major histological patterns, cytological features, and clinicopathological correlation.

Results: Homogeneous architecture with a single dominant histological pattern was a rarity. Single pattern constituting ≥50 % of the tumour was found in less than 1/5th of the cases. Macrotrabecular HCC represented 9.2 % of cases. The simultaneous presence of 2-3 patterns or atypical variants and/ or cytological characteristics was recorded in 25 % and 30 % respectively. Significant clinicopathological associations: Pseudoglandular with microtrabecular pattern-cholestasis, showed better differentiation and early-stage; macrotrabecular pattern frequently occurred with pleomorphic giant cells, higher tumour stage, higher AFP levels; solid pattern often showed clear cells. Noticeable mutual exclusions were MD bodies with microtrabecular and pseudoglandular patterns; Compact pattern with neutrophilic clusters and cholestasis. Larger tumours were significantly more heterogeneous; however, heterogeneity did not correlate with outcome CONCLUSIONS: HCC displays immense heterogeneity with an amalgamation of different histomorphological patterns and features; nevertheless, there are certain reproducible associations and omissions. Tumor biopsies agree fairly well with large specimens. Characterization of phenotypic heterogeneity, dominance, associations, and exclusions in individual patients provides vital information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2020.153290DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
8
marked phenotypic
8
phenotypic heterogeneity
8
heterogeneity dominance
8
clinicopathological associations
8
heterogeneity
7
associations
6
hcc
5
pattern
5
carcinoma clinicopathologic
4

Similar Publications

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies.

J Adv Res

December 2024

The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China. Electronic address:

Background: Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states.

Aim Of Review: This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions.

View Article and Find Full Text PDF

Cytochrome P450 2E1 inhibitor Q11 is effective on hepatocellular carcinoma by promoting peritumor neutrophil chemotaxis.

Int J Biol Macromol

December 2024

Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China. Electronic address:

Current studies found that the peritumoral tissue of hepatocellular carcinoma (HCC) may be different from normal liver tissue based on proteomics, and related to progression, recurrence and metastasis of HCC. Our previous study proposed "peritumor microenvironment (PME)" to summarize the influence of peritumor tissue on occurrence and progression of HCC. Peritumor CYP2E1 activity was significantly elevated in HCC, and related to occurrence and progression of HCC.

View Article and Find Full Text PDF

Discovery of a novel CDK4/6 and HDAC dual-targeting agent for the treatment of hepatocellular carcinoma.

Bioorg Chem

December 2024

The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.

The down-regulation of p21 after long-term CDK4/6 inhibition represents a key mechanism causing resistance to CDK4/6 inhibitors in some tumor cells, while the HDAC inhibitor could upregulate the level of p21. Herein, a series of novel CDK4/6 and HDAC dual-targeting inhibitors based on the moiety of palbociclib were designed and synthesized. Among them, compound N14 potently inhibited CDK4/6 and HDAC1/6 at nanomolar levels and induced cell apoptosis and G/G phase arrest through HDAC-p21-CDK signaling pathway in HuH-7 cell line.

View Article and Find Full Text PDF

Acetylation of E2F1 at K125 facilitates cell apoptosis under serum stress.

Transl Oncol

December 2024

Department of General Surgery, Sanmen People's Hospital, Sanmen 317100, China. Electronic address:

E2F1 is a critical transcription factor that regulates cell cycle progression, is expressed at high levels in most cancer cells, and activates the biogenesis of proteins related to the cell cycle. Over recent years, researchers have demonstrated that E2F1 could also facilitate cellular apoptosis under conditions of cellular stress, thus creating a double-edged sword associated with both the regulation of cellular survival and death. However, the mechanisms responsible for these actions remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!