A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electron spin relaxation of P1 centers in synthetic diamonds with potential as B standards for DNP enhanced NMR. | LitMetric

Electron spin relaxation of P1 centers in synthetic diamonds with potential as B standards for DNP enhanced NMR.

J Magn Reson

Department of Chemistry, Yale University, 350 Edwards Street, New Haven, CT 06511, United States.

Published: January 2021

The microwave magnetic field, B, in the non-resonant structures typically used for DNP-enhanced NMR is relatively small, so calibration via continuous wave (CW) power saturation requires a sample with longer spin lattice relaxation times than the samples used as CW standards in X-band cavities. HPHT diamonds have strong, easily observed EPR signals from P1 centers (nitrogen defects), and are indefinitely stable. This makes HPHT diamonds attractive as secondary standards for calibration of electron B field strength in a variety of experimental arrangements. The concentrations of P1 centers is also typically in the 30-200 ppm range, or equivalently 10-60 mM, and therefore the EPR relaxation observed is relevant to DNP enhanced NMR employing free radical polarizing agents at similar concentrations. Pulsed and CW saturation relaxation measurements T and T are compared at X-band. Under CW conditions the relevant TT product of time constants in our samples at room temperature is found to be dominated by electron-electron spin diffusion, and the product is large enough that saturation will be possible with the B of typical DNP systems. The similarity of T and T values obtained by pulse measurements at X-band and Q-band suggests that the X-band results can be extrapolated to the higher EPR frequencies used for DNP experiments. The electron spin dynamics observed here in HPHT diamond samples identify them as useful model systems to better delineate the interplay of electron spin relaxation, magic angle spinning, and inhomogeneous microwave irradiation as they affect DNP enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2020.106875DOI Listing

Publication Analysis

Top Keywords

electron spin
12
spin relaxation
8
dnp enhanced
8
enhanced nmr
8
hpht diamonds
8
relaxation
5
dnp
5
electron
4
relaxation centers
4
centers synthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!