Background: The accumulation of somatic mutations contributes to ageing and cancer. Sunlight is the principal aetiological factor associated with skin cancer development. However, genetic and phenotypic factors also contribute to skin cancer risk. This study aimed at exploring the role of photoaging, as well as other well-known epidemiological risk factors, in the accumulation of somatic mutations in cancer-free human epidermis.
Material And Methods: We deeply sequenced 46 genes in normal skin biopsies from 123 healthy donors, from which phenotypic data (including age, pigmentation-related genotype and phenotype) and sun exposure habits were collected. We determined the somatic mutational burden, mutational signatures, clonal selection and frequency of driver mutations in all samples.
Results: Our results reveal an exponential accumulation of UV-related somatic mutations with age, matching skin cancer incidence. The increase of mutational burden is in turn modified by an individual's skin phototype. Somatic mutations preferentially accumulated in cutaneous squamous cell carcinoma cancer genes and clonally expanded with age, with distinct mutational processes underpinning different age groups. Our results suggest a loss of fidelity in transcription-coupled repair later in life.
Conclusion: Our findings reveal that ageing is not only associated with an exponential increase in the number of somatic mutations accumulated in normal epidermis, but also with selection and expansion of cancer-associated mutations. Aged, sun-exposed normal skin is thus an extended mosaic of multiple clones with driver mutations, poised for the acquisition of transforming events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614988 | PMC |
http://dx.doi.org/10.1016/j.annonc.2020.11.023 | DOI Listing |
BMJ Case Rep
January 2025
Rheumatology, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
A man in his 60s suffered from refractory, biopsy-proven subacute cutaneous lupus erythematosus that required chronic, moderate dose steroids to manage. His rash was accompanied by arthralgias and negative autoantibody testing. His subacute lupus erythematosus (SCLE) was responsive to tofacitinib, but thrombotic complications limited the use of this medication.
View Article and Find Full Text PDFMutat Res
December 2024
School of Health Sciences and Technology, UPES, Dehradun, Uttarakhand 248007, India. Electronic address:
Gallbladder cancer (GBC) is an aggressive malignancy with a poor prognosis, often diagnosed at advanced stages due to subtle early symptoms. Recent studies have provided a comprehensive view of GBC's genetic and mutational landscape, uncovering crucial pathways involved in its pathogenesis. Environmental exposures, particularly to heavy metals, have been linked to elevated GBC risk.
View Article and Find Full Text PDFNat Med
January 2025
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
Nearly all pancreatic adenocarcinomas (PDAC) are genomically characterized by KRAS exon 2 mutations. Most patients with PDAC present with advanced disease and are treated with cytotoxic therapy. Genomic biomarkers prognostic of disease outcomes have been challenging to identify.
View Article and Find Full Text PDFNat Genet
January 2025
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
Transcription factors are frequent cancer driver genes, exhibiting noted specificity based on the precise cell of origin. We demonstrate that ZIC1 exhibits loss-of-function (LOF) somatic events in group 4 (G4) medulloblastoma through recurrent point mutations, subchromosomal deletions and mono-allelic epigenetic repression (60% of G4 medulloblastoma). In contrast, highly similar SHH medulloblastoma exhibits distinct and diametrically opposed gain-of-function mutations and copy number gains (20% of SHH medulloblastoma).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston Children's Hospital, Boston, MA, USA.
Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, is characterized by progressive neuronal loss and the accumulation of misfolded proteins such as amyloid-β and tau. While neuroinflammation, mediated by microglia and brain-resident macrophages, plays a pivotal role in AD pathogenesis, the intricate interactions among age, genes, and other risk factors remain elusive. Somatic mutations, known to accumulate with age, instigate clonal expansion across diverse cell types, impacting both cancer and non-cancerous conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!