A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential. | LitMetric

Spinal cord injury alters microRNA and CD81+ exosome levels in plasma extracellular nanoparticles with neuroinflammatory potential.

Brain Behav Immun

Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA. Electronic address:

Published: February 2021

AI Article Synopsis

  • Extracellular vesicles (EVs) are important in studying neurodegenerative disorders and have been noted for their roles in spinal cord injury (SCI), but not much attention has been given to this area yet.
  • In a study, researchers examined EVs from mouse plasma after SCI at different time points (1, 3, 7, and 14 days post-injury) and found a decrease in EVs at 1 day, followed by an increase in specific marker CD81 over time.
  • The study also showed that EVs were altered in size and RNA content after SCI, influencing pro- and anti-inflammatory responses when injected into the brain, indicating a significant role for EVs in the injury and healing process

Article Abstract

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897251PMC
http://dx.doi.org/10.1016/j.bbi.2020.12.007DOI Listing

Publication Analysis

Top Keywords

plasma evs
20
spinal cord
12
plasma
11
evs
11
cord injury
8
plasma extracellular
8
extracellular nanoparticles
8
tetraspanin evs
8
injury site
8
injury
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: