Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with poor survival. High expression of nuclear factor erythroid 2-related factor 2 (Nrf2) is an antioxidant transcript factor that protects malignant cells from death. Polygalacin D (PGD), a bioactive compound isolated from Platycodongrandiflorum (Jacq.), has recently been reported to be an anti-tumor agent. This study aimed to investigate the anti-cancer effects of PGD and its underlying molecular mechanisms in human ESCC. Here, we confirmed that Nrf2 was over-expressed in clinical ESCC tissues and cell lines. PGD treatments markedly reduced Nrf2 expression in a dose- and time-dependent manner in ESCC cell lines. Importantly, we found that PGD significantly reduced proliferation, and induced G2/M cell cycle arrest and apoptosis in ESCC cells. Also, PGD dramatically triggered autophagy in ESCC cells, and autophagy inhibitor bafilomycinA1 (BafA1) greatly abrogated the inhibitory role of PGD in cell viability and apoptosis. In addition, PGD evidently provoked reactive oxygen species (ROS) accumulation in ESCC cells, and pre-treatment of ROS scavenger N-acetyl-l-cysteine (NAC) markedly abolished PGD-triggered cell death. PGD also dramatically repressed migration and invasion in ESCC cells. Mechanistic investigation revealed that Nrf2 gene was directly targeted by miR-142-5p. MiR-142-5p negatively regulated Nrf2 expression in ESCC cells. We notably found that PGD-inhibited proliferation, migration and invasion in ESCC were considerably rescued by miR-142-5p knockdown; however, ROS production, apoptosis and autophagy induced by PGD were almost eliminated when miR-142-5p was silenced. On the contrast, over-expressing miR-142-5p could remarkably promote the anti-ESCC effects of PGD. Experiments in vivo by the tumor xenograft model confirmed that miR-142-5p effectively improved the activity of PGD to repress tumor growth and lung metastasis. Both in vitro and in vivo studies showed that PGD had few side effects on normal cells and major organs. Collectively, our findings provided the first evidence that PGD could be an effective therapeutic strategy for ESCC treatment by regulating miR-142-5p/Nrf2 axis with few adverse effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.029 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Esophageal carcinoma is a highly prevalent malignancy worldwide. The present study aimed to investigate the mechanism by which the natural compound coptisine affects pyroptosis in esophageal squamous cell carcinoma (ESCC). The expression of c-Met in ESCC patients was assessed by immunohistochemical analysis of tissue microarrays.
View Article and Find Full Text PDFToxicon
January 2025
College of Biological Sciences and Technology, YiLi Normal University. Electronic address:
Background: Radiotherapy is essential for the management of esophageal squamous cell carcinoma (ESCC). However, ESCC cells are highly susceptible to developing resistance to radiotherapy, leading to poor prognosis. Ursolic acid (UA) is a herbal monomer, has multiple medicinal benefits like anti-tumor.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, China.
Esophageal squamous cell carcinoma (ESCC) is one of the main subtypes of esophageal carcinoma with high morbidity. This study aimed to explore the role of FKBP prolyl isomerase 11 (FKBP11) in ESCC and investigate the underlying mechanism. FKBP11 levels in ESCC tumor tissues and cell lines were measured.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Radiobiology Lab, Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Göttingen, Germany.
Background: Esophageal cancer has a poor prognosis despite treatment advancements. Although the benefit of neoadjuvant chemoradiotherapy (CRT) followed by adjuvant immunotherapy is evident, the effects of CRT on PD-L1 expression in esophageal cancer are not well understood. This study examines the impact of neoadjuvant CRT on PD-L1 surface expression in esophageal cancer both and considering its implications for immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!