Whether or not viruses are alive remains unsettled. Discoveries of giant viruses with translational genes and large genomes have kept the debate active. Here, a fresh approach is introduced, based on the organisational definition of life from within systems biology. It views living as a circular process of self-organisation and self-construction which is 'closed to efficient causation'. How information combines with force to fabricate and organise environmentally obtained materials, given an energy source, is here explained as a physical embodiment of informational constraint. Comparing a general virus replication cycle with Rosen's (M,R)-system shows it to be linear, rather than closed. Some viruses contribute considerable organisational information, but so far none is known to supply all required, nor the material nor energy necessary to complete their replication cycle. As a result, no known virus replication cycle is closed to efficient causation: unlike cellular obligate parasites, viruses do not match the causal structure of an (M,R)-system. Analysis based in identifying a Markov blanket in causal structure proved inconclusive, but using Integrated Information Theory on a Boolean representation, it was possible to show that the causal structure of a virocell is not different from that of the host cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biosystems.2020.104324 | DOI Listing |
Front Microbiol
January 2025
College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
Introduction: Getah virus (GETV) is a zoonotic virus transmitted via a mosquito-vertebrate cycle. While previous studies have explored the epidemiology and pathogenicity of GETV in various species, its molecular mechanisms remain largely unexplored.
Methods: This study investigated the impact of GETV infection and associated molecular mechanisms on reactive oxygen species (ROS) and autophagy levels in mouse Leydig cells both and .
Front Microbiol
January 2025
China Animal Health and Epidemiology Center, Qingdao, China.
Introduction: African swine fever is a highly transmissible and lethal infectious disease caused by the African swine fever virus (ASFV), which has considerably impacted the global swine industry. Lipid metabolism plays a vital role in sustaining lipid and energy homeostasis within cells and influences the viral life cycle.
Methods And Results: In this study, we found that ASFV infection disrupts lipid metabolism in the host.
BMC Genom Data
January 2025
Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA.
As one of the most important ruminant breeds, Holstein cattle supply a significant portion of milk and dairy for human consumption, playing a crucial role in agribusiness. The goal of our study was to examine the molecular adaptation of gastrointestinal tissues that facilitate milk synthesis in dairy cattle. DATA DESCRIPTION: We performed RNA-seq analysis on epithelial cells from the rumen, duodenum, and colon at eight different time points: Days 3, 14, 28, 45, 120, 220, and 305 in milk, as well as the dry period.
View Article and Find Full Text PDFCell Prolif
January 2025
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China.
Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.
View Article and Find Full Text PDFActa Bioeng Biomech
September 2024
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.
In this study, the analysis of 2824 vulnerable road users (VRU) accident data from China's FASS (Future mobile traffic Accident Scenario Study) database indicates that VRU side impacts are the most common collision scenarios. A typical accident (minivan-toeBike) from the FASS database was selected for accident reconstruction. WordSID thorax module has been employed to evaluate e-Bike rider thorax injuries and its kinematic difference has been investigated as well.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!