Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multidrug resistance due to the expression of extended spectrum β-lactamases (ESBLs) by bacterial pathogens is an alarming health concern with huge socio-economic burden. Here, 102 bacterial isolates from Wastewater treatment plants (WTPs) were screened for resistance to different antibiotics. Kirby-Bauer method and phenotypic disc confirmatory test confirmed the prevalence of 20 ESBLs. Polymerase chain reaction-based detection confirmed 11 bla positive bacterial isolates. Genotyping of bacterial isolates by 16S rRNA gene sequencing showed the dissemination of bla in Escherichia fergusonii, Escherichia coli, Shigella sp., Kluyvera georgiana and Enterobacter sp. Amongst Kluyvera georgiana isolates, two were harboring bla. The 3D model of CTX-M-152 protein was generated using SwissProt and characterized by Ramachandran plot and SAVES. A library of natural compounds was screened to identify novel CTX-M-152 inhibitor(s). High-throughput virtual screening (HTVS), standard precision (SP) and extra precision (XP) docking led to the identification of five natural compounds (Naringin dihydrochalcone, Salvianolic acid B, Inositol, Guanosine and Ellagic acid) capable of binding to active site of CTX-M-152. Futher, characterization by MM-GBSA (Molecular Mechanism General Born Surface Area), and ADMET (Adsorption, Distribution, Metabolism, Excretion and Toxicity) showed that Ellagic acid was the most potent inhibitor of CTX-M-152. Molecular dynamics simulation also confirmed that Ellagic acid form a stable complex with CTX-M-152. The ability of Ellagic acid to inhibit growth of bacteria harboring CTX-M-152 was confirmed by MIC (Minimum Inhibitory Concentration; broth dilution method) and Zone of Inhibition (ZOI) studies with respect to Cefotaxime. The identification of a novel inhibitor of CTX-M-152 from a natural source holds promise for employment in the control of bacterial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2020.104688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!