Sorption of diethyl phthalate and cadmium by pig carcass and green waste-derived biochars under single and binary systems.

Environ Res

Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:

Published: February 2021

Potentially toxic elements (PTEs) and phthalic acid esters (PAEs) often coexist in contaminated soils. Their co-existence may affect the mutual sorption behavior, and thereby influence their bioavailability and fate in soils. To our best knowledge, the impacts of plant-and animal-derived biochar on the competitive sorption-desorption of PTEs and PAEs in soils with different organic carbon content have not been studied up to date. Therefore, in this study, batch sorption-desorption experiments were conducted to investigate the influence of biochars derived from pig carcass and Platanus orientalis branches on the mono- and competitive sorption of cadmium (Cd) and diethyl phthalate (DEP) in soils with high (HS) and low (LS) organic carbon content. The DEP sorption was well described by Freundlich isotherm model, while Cd sorption fitted better with the Langmuir isotherm model. Application of both biochars enhanced soil sorption of DEP, which increased as the application doses increased. The HS showed a stronger affinity to both DEP and Cd than the LS. In the LS, the pig carcass biochar (PB) addition was more effective to increase the sorption capacity of Cd and DEP and to reduce their desorption than woody biochar (WB) treatments. Moreover, the co-existing of Cd could reduce the sorption of DEP, especially in the LS. The presence of DEP enhanced Cd sorption in LS treated by both biochars, but the sorption of Cd was suppressed with DEP addition in the PB-amended HS. In conclusion, the soil sorption capacity of DEP and Cd was affected by biochar type, application dose and soil organic carbon content. The reciprocal effect between DEP and Cd was also a crucial factor influencing their sorption/desorption by biochar. Therefore, PB and WB, especially PB, can be used for metal/DEP immobilization due to enhanced sorption. This approach is applicable for future remediation of soils contaminated by PTEs and PAEs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2020.110594DOI Listing

Publication Analysis

Top Keywords

sorption
12
pig carcass
12
organic carbon
12
carbon content
12
dep
10
diethyl phthalate
8
ptes paes
8
isotherm model
8
soil sorption
8
sorption dep
8

Similar Publications

In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.

View Article and Find Full Text PDF

Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.

View Article and Find Full Text PDF

This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal-Organic Frameworks.

Nanomicro Lett

January 2025

College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, Shanghai, 200092, People's Republic of China.

Fluorinated gases (F-gases) play a vital role in the chemical industry and in the fields of air conditioning, refrigeration, health care, and organic synthesis. However, the direct emission of waste gases containing F-gases into the atmosphere contributes to greenhouse effects and generates toxic substances. Developing porous materials for the energy-efficient capture, separation, and recovery of F-gases is highly desired.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!