Most quantitative research methods are based on measuring either the total or the free concentration of an analyte in a sample. However, this is often insufficient for the study of complex biological systems. The main objective of this research was to develop new methods for providing more information from samples: the free concentration (C), the total concentration (C), and the plasma binding capacity (PBC). Samples were processed using microextraction and ultrafiltration. For each of these techniques, two quantification procedures were used: addition of isotopically labeled standard and repeated analysis of the same sample. The new methods were validated by analyzing clinical samples and samples with known concentrations. Methods based on addition of labeled compound were found to be the fastest, and most reproducible. For analysis of clinical samples, methods based on microextraction were more sensitive and more accurate than those based on ultrafiltration. For analysis of pooled plasma samples, the overall accuracy of all approaches to determine PBC, testosterone C, and testosterone C was between 94 and 109%, 87-113%, and 94-122% respectively. The new approach goes beyond a simple concentration measurement, giving more information from clinical samples, with great potential for personalizing drug dosage and therapy to the needs of individual patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938943PMC
http://dx.doi.org/10.1016/j.xphs.2020.12.001DOI Listing

Publication Analysis

Top Keywords

clinical samples
16
free concentration
12
methods based
12
concentration total
8
total concentration
8
concentration plasma
8
plasma binding
8
binding capacity
8
samples
8
concentration
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!