A Multi-Omics Analysis of PON1 Lactonase Activity in Relation to Human Health and Disease.

OMICS

Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

Published: January 2021

Paraoxonase 1 (PON1) enzyme has antioxidative properties and is present in mammalian blood and several other body fluids. In blood, PON1 is usually integrated into the high-density lipoprotein (HDL) cholesterol. PON1 is a highly versatile enzyme displaying diverse functions such as arylesterase, lactonase, and paraoxonase, among others. PON1 activities are usually investigated with artificial substrates, for example, dihydrocoumarin and thiobutyl butyrolactone for lactonase activity. The PON1 enzyme activities measured with different substrates tend to be falsely assumed as being equivalent in the literature, although there are poor or weak correlations among the PON1 enzyme activities with different substrates. In addition, and despite our knowledge of the factors influencing PON1 paraoxonase and arylesterase activities, there is little knowledge of PON1 lactonase activity variations and attendant mechanisms. This is important considering further that the lactonase activity is the native activity of PON1. We report here a multi-omics analysis of PON1 lactonase activity. The influence of genetic variations, particularly of single nucleotide polymorphisms and epigenetic, proteomic, and lipidomic variations on PON1 lactonase activity are reviewed. In addition, the influence of various environmental, clinical, and demographic variables on PON1 lactonase activity is discussed. Finally, we examine the associations between PON1 lactonase activity and health states and common complex diseases such as atherosclerosis, dementias, obesity, and diabetes. To the best of our knowledge, this is the first multi-omics analysis of PON1 lactonase activity with an eye to future applications in basic life sciences and translational medicine and the nuances of critically interpreting PON1 function with lactones as substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045895PMC
http://dx.doi.org/10.1089/omi.2020.0160DOI Listing

Publication Analysis

Top Keywords

lactonase activity
36
pon1 lactonase
28
pon1
16
multi-omics analysis
12
analysis pon1
12
pon1 enzyme
12
lactonase
10
activity
10
paraoxonase pon1
8
activity pon1
8

Similar Publications

A novel zearalenone lactonase can effectively mitigate zearalenone-induced reproductive toxicity in gilts.

Toxicon

January 2025

State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Key Laboratory of Smart Farming Technology for Agricultural Animals of Ministry of Agriculture and Rural Affairs, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. Electronic address:

Zymdetox Z-2000 is a novel zearalenone (ZEN) lactonase produced by Bacillus subtilis that can biodegrade ZEN to hydrolyzed ZEN and decarboxylated hydrolyzed ZEN with much lower estrogenic activity. This study aims to evaluate the efficacy of Zymdetox Z-2000 in mitigating the adverse effects of ZEN on the growth performance and reproductive health of gilts. A total of 80 crossbred Landrace × Yorkshire gilts (9.

View Article and Find Full Text PDF

A Novel Screening System to Characterize and Engineer Quorum Quenching Lactonases.

Biotechnol Bioeng

January 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.

N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.

View Article and Find Full Text PDF

Substrate specificity study of zearalenone lactonase by analyzing interaction networks of residues near the β6-α6 region.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Recently, how could microbial lactonase react to the mycotoxin zearalenone (ZEN) and its derivatives such as α-zearalenol (α-ZOL) is still unclear, resulting in limited applications. In this study, the interaction networks of residues near the β6-α6 region in lactonase from Monosporascus sp. GIB2 (ZENM) were analyzed.

View Article and Find Full Text PDF

Lactonase activity of α-carbonic anhydrases allows identification of novel inhibitors.

Arch Pharm (Weinheim)

January 2025

NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Firenze, Italy.

Lactones, a diverse and abundant class of molecules found in nature, exhibit a wide range of bioactivities, including anti-inflammatory, anticancer, and antibacterial effects. Among them, acyl homoserine lactones (AHSLs) play a crucial role in quorum sensing, influencing bacterial pathogenicity and biofilm formation in Gram-negative bacteria. Paraoxonases (PONs), calcium-containing enzymes known for their lactonase activity, have been shown to hydrolyze AHSLs and reduce the biofilm formation of several pathogenic bacteria.

View Article and Find Full Text PDF

Background: Qurom quenching enzyme have an impact on treatment efficacy and prevent the recurrence of Helicobacter pylori biofilm-related infections, although it has not been thoroughly investigated in vitro and in silico. The current study aims to characterize the N-acyl homoserine lactonase, the quorum quenching AiiA protein of Bacillus licheniformis against H. pylori biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!