Polymeric Complex-Based Transparent and Healable Ionogels with High Mechanical Strength and Ionic Conductivity as Reliable Strain Sensors.

ACS Appl Mater Interfaces

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.

Published: December 2020

Transparent and healable ionogels with very high mechanical strength, ionic conductivity, and resilience were fabricated for use as strain sensors with satisfactory reliability. The ionogels were fabricated by casting an aqueous solution of poly(vinyl alcohol) (PVA)-poly(vinylpyrrolidone) (PVP) complexes and 1-ethyl-3-methylimidazolium dicyanamide ([EMIm][DCA]), followed by evaporation of water at room temperature. The use of [EMIm][DCA] endowed the resulting ionogels with ionic conductivity at room temperature as high as 19.7 mS cm. Owing to the synergy between the abundant number of hydrogen bonds between PVA and PVP and the crystallized PVA segments that served as nanofillers, the resulting ionogels had good mechanical properties with a tensile stress of 7.7 MPa, a strain of 821%, and good resilience. In addition, the resulting ionogels showed rapid and repeatable sensing signals over a wide strain range (0.1-400%). This enabled them to detect both vigorous muscle movements, such as walking and jumping, and subtle muscle movements, such as pulse. Moreover, owing to the reversibility of hydrogen bonds, physically damaged mechanical properties, conductivity, and sensing ability of the ionogels could be conveniently healed with the assistance of water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c18832DOI Listing

Publication Analysis

Top Keywords

ionic conductivity
12
transparent healable
8
healable ionogels
8
ionogels high
8
high mechanical
8
mechanical strength
8
strength ionic
8
strain sensors
8
room temperature
8
hydrogen bonds
8

Similar Publications

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.

View Article and Find Full Text PDF

Due to its "ferroionic" nature, CuInPS combines switchable ferroelectric polarization with highly mobile Cu ions, allowing for multiple resistance states. Its conductive mechanism involves ferroelectric switching, ion migration, and corresponding intercoupling, which are highly sensitive to external electric field. Distinguishing the dominant contribution of either ferroelectric switching or ion migration to dynamic conductivity remains a challenge and the conductive mechanism is not clear yet.

View Article and Find Full Text PDF

Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.

View Article and Find Full Text PDF

Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.

View Article and Find Full Text PDF

Reduction and amalgamation of mercury in silver nanoparticle suspensions under dark conditions.

Chemosphere

December 2024

Department of Chemistry and Biochemistry, Florida International University, Miami, 11200 SW 8th St, Miami, FL 33199, United States; Institute of Environment, Florida International University, 11200 SW 8th St, Miami, FL33199, United States. Electronic address:

Mercury (Hg) is a global pollutant of concern, and its transport and transformation are controlled by various environmental factors, with aquatic particles being an important driver. Understanding the interactions between silver nanoparticles (AgNPs) and Hg under dark condition is a prerequisite for studying the extent of AgNPs interaction with light and its participation in Hg biogeochemical cycling. Herein, under laboratory experimental setting, it was found that the reduction of divalent Hg (Hg(II)) to gaseous elemental Hg (Hg) by AgNPs readily occurred.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!