Discrete water domains in hydrophobic environment find relevance in aerosols, oil refinery, the human body, etc. The interfacial microstructure plays a crucial role in the stability of such water domains. Over the decades, the amphiphile-induced electrostatic interaction is considered to be the major stabilizing factor operating at these interfaces. Here we take the representative water/AOT/oil microemulsion to show that creating a strong H-bonding network through suitable additive, such as protic ionic liquid (IL) at the interface, helps both the growth and stability of water domains in the hydrophobic phase. On the other hand, common electrolytes and aprotic ILs fail to replicate such behavior as seen by Raman, Fourier transform infrared spectroscopy, dynamic light scattering (DLS), and electron microscopy measurements. Experimental results are further supported by the all-atomic molecular dynamics (MD) simulations that showed extended H-bonding mediated by the protic IL cations that were localized at the interface. High temperature DLS and rheology studies have shown greater thermal stability and mechanical strengths of our biocompatible microemulsions, which have potential to become suitable templates for synthesis of nanoparticle and various organic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c02855DOI Listing

Publication Analysis

Top Keywords

water domains
16
stability water
12
domains hydrophobic
12
extended h-bonding
8
protic ionic
8
growth stability
8
hydrophobic environment
8
h-bonding protic
4
ionic liquids
4
liquids facilitates
4

Similar Publications

The soils/sediments organic carbon sorption coefficient (K) of organic substances is one of the indispensable environmental behavioral parameters in chemicals management. Because the test procedure used to measure K is normally expensive and time-consuming, predictive methods are considered vitally important technology to fill the data gap of K. In this study, quantitative structure-property relationship (QSPR) models are developed using a data set with 1477 experimental logK values and seven typical machine learning algorithms.

View Article and Find Full Text PDF

The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.

View Article and Find Full Text PDF

Differential impacts of water diversion and environmental factors on bacterial, archaeal, and fungal communities in the eastern route of the South-to-North water diversion project.

Environ Int

January 2025

Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871 China. Electronic address:

Water diversion projects effectively mitigate the uneven distribution of water resources but can also influence aquatic biodiversity and ecosystem functions. Despite their importance, the impacts of such projects on multi-domain microbial community dynamics and the underlying mechanisms remain poorly understood. Utilizing high-throughput sequencing, we investigated bacterial, archaeal, and fungal community dynamics along the eastern route of the South-to-North water diversion project during both non-water diversion period (NWDP) and water diversion period (WDP).

View Article and Find Full Text PDF

Synergistic spatial separation effect of internal electric field in ALD-generated BiFeO/CuO@Co Z-type heterojunction for enhanced photocatalytic water oxidation.

J Colloid Interface Sci

January 2025

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China; Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Centre, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

Altering the electron distribution within a catalyst to manipulate internal charge migration pathways is an effective strategy for achieving high efficiency in carrier separation and migration, which is essential for the advancement of photocatalytic water oxidation technologies. We have employed atomic layer deposition (ALD) to construct a BiFeO/CuO (BFO/CuO) heterojunction with a specific CuO thickness, resulting in a Z-type junction (BFO/CuO50) characterized by a robust internal electric field. This junction facilitates the spatial separation of charge carriers, thereby enhancing their migration efficiency.

View Article and Find Full Text PDF

ERF114/115/109 are essential for jasmonate-repressed non-canonical JAZ8 activity in JA signaling.

Cell Rep

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Science, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Jasmonate (JA), a key plant hormone, regulates various aspects of plant development and stress responses, primarily through the degradation of canonical jasmonate-ZIM domain (JAZ) proteins by the SCF complex. While JAZ8, a non-canonical JAZ protein lacking the degron signal, has been shown to repress JA responses, the mechanism by which JA inhibits JAZ8 activity remains unclear. Here, we demonstrate that Arabidopsis ethylene response factor 114 (ERF114), ERF115, and ERF109 regulate JA signaling through interacting with JAZ8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!