OCT-Based Angiography and Surface Topography in Burn-Damaged Skin.

Lasers Surg Med

Department of Bioengineering, University of Washington, Seattle, Washington, 98195.

Published: August 2021

AI Article Synopsis

  • The study aims to evaluate the efficacy of optical coherence tomography (OCT) as a non-invasive tool for assessing burn wound healing and to understand the physiological aspects of wound recovery.
  • Seven patients with severe burn wounds were imaged at two different time points, allowing for the classification of burn zones into red, white, and mixed sites, and analysis of their vascular and surface characteristics.
  • Results showed significant changes in vascular area density and surface texture over time, indicating varying degrees of healing in different burn zones when compared to healthy skin.

Article Abstract

Background And Objectives: There is a clinical need for an accurate, non-invasive imaging tool that can provide the objective assessment of burn wounds. The aims of this study are to demonstrate the potential of optical coherence tomography (OCT) in evaluating burn wound healing, as well as exploring the physiological basis of human wound healing.

Study Design/materials And Methods: This was a retrospective study. Seven patients with severe burn wounds who were admitted to Harborview Medical Center were imaged using an in-house-built, clinical-prototype OCT system. OCT imaging was carried out at multiple scan sites on the burned skin across two time points (imaging session #1 and #2) with a field of view of ~9 × 9 mm. Due to pathological differences among burn zones, scan sites were classified into red sites (zone of hyperemia), white sites (zone of coagulation), and mixed sites. In addition to obtaining qualitative en face vascular and surface topography maps, we quantified vascular area density and surface roughness for comparative purposes.

Results: En face vascular and surface topography maps demonstrated numerous morphological changes over both imaging sessions associated with burn injury, such as altered blood flow and loss of regular texture. Quantitative analyses revealed that during imaging session #1, vascular area density was significantly increased within the red sites compared with that of a healthy control (P = 0.0130), while vascular area density was significantly decreased within the white sites compared with that of a healthy control (P < 0.0001). During imaging session #2, vascular area density was significantly reduced to a more normal range within the red sites compared with imaging session #1 (P = 0.0215); however, vascular area density was still significantly lower within the white sites compared with that of a healthy control (P < 0.0001). Furthermore, vascular area density and surface roughness were significantly increased within the white sites during imaging session #2 compared with imaging session #1 (both P < 0.0001).

Conclusions: OCT is clinically feasible to monitor vascular changes and alterations in skin surface roughness during the process of burn wound healing. Variations in vascular area density and roughness measurements within the burn wounds revealed by OCT offer some key insights into the underlying pathophysiological mechanisms responsible for wound healing, which may become critical biological indicators in future clinical evaluation and monitoring of wound healing. Lasers Surg. Med. © 2020 Wiley Periodicals LLC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lsm.23367DOI Listing

Publication Analysis

Top Keywords

surface topography
12
vascular area
12
area density
12
burn wounds
8
scan sites
8
imaging session
8
red sites
8
sites zone
8
white sites
8
face vascular
8

Similar Publications

Differential Responses of Methylobacterium and Sphingomonas Species to Multispecies Interactions in the Phyllosphere.

Environ Microbiol

January 2025

Institute of Microbiology and Dahlem Centre of Plant Sciences, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany.

The leaf surface, known as the phylloplane, presents an oligotrophic and heterogeneous environment due to its topography and uneven distribution of resources. Although it is a challenging environment, leaves support abundant bacterial communities that are spatially structured. However, the factors influencing these spatial distribution patterns are not well understood.

View Article and Find Full Text PDF

Effect of mechanical instrumentation on titanium implant surface properties.

Dent Mater

January 2025

Department of Materials, School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester M13 9PL, UK. Electronic address:

Objective: To assess the impact of mechanical decontamination using rotary brushes on the surface topography, elemental composition, roughness, and wettability of titanium implant surfaces.

Methods: Four commercially available rotary brushes were used: Labrida BioClean Brush® (LB), i-Brush1 (IB), NiTiBrush Nano (NiTiB), and Peri-implantitis Brush (PIB). Seventy-five titanium discs with sandblasted, large-grit, acid-etched (SLA) surfaces were randomly assigned to five groups (n = 15): LB, IB, NiTiB, PIB, and a control group.

View Article and Find Full Text PDF

Roughness metrics measured with stylus profilometry are commonly used to explain a floor's friction performance, yet these metrics inconsistently predict shoe-floor friction. While strong correlations have been shown for systematically modified flooring, the goal of this study is to address a gap regarding the predictive ability of these metrics across heterogeneous porcelain flooring products. The predictive ability of four roughness metrics on oily friction performance was assessed using 23 floors and 4 shoe designs.

View Article and Find Full Text PDF

Morphological Features Influence the Drug Loading and Delivery Efficacy of Photoactivatable Gold Nanocarriers for Antitumor Photo/Chemotherapy.

ACS Appl Mater Interfaces

January 2025

Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong 271016, PR China.

Photoactivatable gold nanocarriers are transforming antitumor therapies by leveraging their distinctive physicochemical properties, enabling targeted drug delivery and enhanced therapeutic efficacy in cancer treatment. This study systematically investigates how surface topography and morphology of gold nanocarriers influence drug loading capacity, light-to-heat conversion efficiency, and overall therapeutic performance in photo/chemotherapy. We synthesized four distinct morphologies of gold nanoparticles: porous gold nanocups (PAuNCs), porous gold nanospheres (PAuNSs), solid gold nanocups (SAuNCs), and solid gold nanospheres (SAuNSs).

View Article and Find Full Text PDF

Suppressing Friction-Induced Stick-Slip Vibration and Noise of Zinc-Coated Steel through Temper Rolling.

Langmuir

January 2025

Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.

The stick-slip phenomenon as a prevalent friction instability poses significant challenges to industry, including frictional vibration, reduced precision, and noise generation. The interfacial interactions between asperities on the surface of materials are critical in influencing stick-slip behavior. This study focused on modifying the asperities on the surface of zinc-coated steel through temper rolling as a new approach to suppress friction-induced stick-slip vibration and noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!