Reversing the immunosuppressive tumor microenvironment (TME) is a strategic initiative to sensitize cancer immunotherapy. Emerging evidence shows that cyclic diguanylate monophosphate (c-di-GMP or cdG) can induce the stimulator of interferon genes (STING) pathway activation of antigen-presenting cells (APCs) and upregulate expression of type I interferons (IFNs) to enhance tumor immunogenicity. anionic cdG revealed fast plasma clearance, poor membrane permeability, and inadequate cytosolic bioavailability. Therefore, we explored a comprehensive " vaccination" strategy on the basis of nanomedicine to trigger robust antitumor immunity. Rhodamine B isothiocyanate (RITC) fluorescent mesoporous silica nanoparticles (MSN) synthesized and modified with poly(ethylene glycol) (PEG) and an ammonium-based cationic molecule (TA) were loaded with negatively charged cdG via electrostatic interactions to form cdG@RMSN-PEG-TA. Treatment of RAW 264.7 cells with cdG@RMSN-PEG-TA markedly stimulated the secretion of IL-6, IL-1β, and IFN-β along with phospho-STING (Ser365) protein expression. cdG@RMSN-PEG-TA enhanced infiltration of leukocytes, including CD11c dendritic cells, F4/80 macrophages, CD4 T cells, and CD8 T cells within the tumor microenvironment (TME), resulting in dramatic tumor growth inhibition in 4T1 breast tumor-bearing Balb/c mice. Our findings suggest that a nanobased platform can overcome the obstacles bare cdG can face in the TME. Our approach of an vaccination using a STING agonist provides an attractive immunotherapy-based strategy for treating breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c16728 | DOI Listing |
Nano Lett
January 2025
Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States.
In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China; Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China.
Research on stimuli-responsive micro-nanocontainers has gained attention for targeted corrosion inhibition and controlled emulsification-demulsification in oil recovery. However, existing nanocontainers face issues like irreversible drug release and limited functionality. This study presents a multi-functional nanocontainer design with reversible drug release and emulsification-demulsification capabilities.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.
Lung cancer continues to be the leading cause of mortality globally. Nanotechnology-mediated targeted drug delivery approach is one of the promising strategies for the treatment of lung cancer. Due to their multifactorial role, mesoporous silica nanoparticles (MSNs), have attracted a lot of attention for drug delivery.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Intracellular bacteria can evade the attack of the immune system and the bactericidal effects of most antibiotics due to the protective effect of the host cells. Herein, inspired by the stimuli-responsive behaviors of biological ion channels, a kind of synergistic cascade potassium ion (K)-responsive nanoparticles gated with K-responsive polymers is ingeniously designed to target intracellular bacteria and then control drug release. Due to the cooperative interaction of host-guest complexation and conformational transition of K-responsive polymers, the grafted gates based on these polymers could recognize high K concentration to reverse the negatively charged nanoparticles into positively charged ones for targeting bacteria and subsequently inducing a switch from the hydrophobic shrinking "off" state to the hydrophilic stretching "on" state for drug release.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia.
Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!