Tumor Microenvironment-"AND" Near-Infrared Light-Activated Coordination Polymer Nanoprodrug for On-Demand CO-Sensitized Synergistic Cancer Therapy.

Adv Healthc Mater

State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Gansu, Lanzhou, 730000, China.

Published: April 2021

Carbon monoxide (CO) as an emerging treatment holds great promise for inducing the apoptosis of cancer cells. Here coordination assembled strategy is first reported for synthesis of Cu(II)-flavone coordination polymer (NCu-FleCP) CO nanoprodrug that is stable in normal physiological conditions, and yet readily reduces to small size prodrug complex and releases CO on demand under glutathione (GSH) and near infrared (NIR) light. Specifically, after uptaking by cancer cells, local GSH attacked coordination bond within NCu-FleCP, resulting in the release of Cu(I) and free Fle. The CC bond of Fle is cleavage under NIR light to release CO for gas therapy, and Cu(I) reacts with local H O through Fenton like reaction to generate hydroxyl radicals ( OH) for chemodynamic therapy. Detailed in vitro and in vivo experiments demonstrate that the CO prodrug system in generating a sufficient quantity of CO and OH offers remarkable destructive effects against cancer cells without causing toxicity to surrounding normal tissues. The study provides a solid foundation to develop smart coordination polymer CO prodrugs with on-demand CO release, enhanced permeability and retention effect, and biodegradability for multimodal synergistic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202001728DOI Listing

Publication Analysis

Top Keywords

coordination polymer
12
cancer cells
12
nir light
8
coordination
5
tumor microenvironment-"and"
4
microenvironment-"and" near-infrared
4
near-infrared light-activated
4
light-activated coordination
4
polymer nanoprodrug
4
nanoprodrug on-demand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!