A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Laser Photobiomodulation on Periodontal Ligament Stem Cells. | LitMetric

The Effect of Laser Photobiomodulation on Periodontal Ligament Stem Cells.

Photochem Photobiol

Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.

Published: July 2021

Photobiomodulation (PBM) is considered as a noninvasive procedure with the potential of inducing favorable changes in cellular behavior. In this study, we aimed to evaluate the effects of near-infrared low-intensity laser PBM on proliferation, viability and osteogenic differentiation of stem cells isolated from human periodontal ligament. A 940-nm diode laser with an energy density of 4 J cm in a 100-mW continuous wave was used for irradiation in 3 sessions every 48h. Cell viability was measured 24, 48 and 72 h after irradiation. The effects of laser on mineralized tissue deposition were evaluated by using Alizarin red staining after dividing cells into three groups of nonosteogenic medium (C-), an osteogenic medium without laser (C+), and an osteogenic medium with laser irradiation (L+). Gene expression levels were also evaluated by real-time PCR. Our results showed no significant difference between MTT levels of the study and control groups. After 14 and 21 days, both L+ and C+ groups showed an increase in mineralized tissue formation compared to the C- group. There was an increase in VEGF and BMP expressions compared to C-. In conclusion, the irradiation setting used in this study may be able to improve mineralized tissue deposition.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.13367DOI Listing

Publication Analysis

Top Keywords

mineralized tissue
12
periodontal ligament
8
stem cells
8
tissue deposition
8
osteogenic medium
8
medium laser
8
laser
6
laser photobiomodulation
4
photobiomodulation periodontal
4
ligament stem
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!