The epidermal growth factor receptor (EGFR) harbors a calmodulin (CaM)-binding domain (CaM-BD) and a CaM-like domain (CaM-LD) upstream and downstream, respectively, of the tyrosine kinase (TK) domain. We demonstrate in this paper that deletion of the positively charged CaM-BD (EGFR/CaM-BD∆) inactivated the TK activity of the receptor. Moreover, deletion of the negatively charged CaM-LD (EGFR/CaM-LD∆), leaving a single negative residue (glutamate), reduced the activity of the receptor. In contrast, substituting the CaM-LD with a histidine/valine-rich peptide (EGFR/InvCaM-LD) caused full inactivation. We also demonstrated using confocal microscopy and flow cytometry that the chimera EGFR-green fluorescent protein (GFP)/CaM-BD∆, the EGFR/CaM-LD∆, and EGFR/InvCaM-LD mutants all bind tetramethylrhodamine-labelled EGF. These EGFR mutants were localized at the plasma membrane as the wild-type receptor does. However, only the EGFR/CaM-LD∆ and EGFR/InvCaM-LD mutants appear to undergo ligand-dependent internalization, while the EGFR-GFP/CaM-BD∆ mutant seems to be deficient in this regard. The obtained results and in silico modelling studies of the asymmetric structure of the EGFR kinase dimer support a role of a CaM-BD/CaM-LD electrostatic interaction in the allosteric activation of the EGFR TK.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30205DOI Listing

Publication Analysis

Top Keywords

epidermal growth
8
growth factor
8
factor receptor
8
tyrosine kinase
8
activity receptor
8
egfr/cam-ld∆ egfr/invcam-ld
8
egfr/invcam-ld mutants
8
receptor
5
role calmodulin-binding
4
calmodulin-binding calmodulin-like
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!