A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanistic insights on melatonin-mediated drought stress mitigation in plants. | LitMetric

AI Article Synopsis

  • Drought stress significantly impacts crop yields and food security, prompting the need for effective adaptation strategies.
  • Melatonin has been identified as a key signaling molecule that helps plants cope with drought by regulating important physiological processes like photosynthesis and water absorption.
  • This review highlights melatonin's role in enhancing plant resilience against drought through various mechanisms, making it a promising option for sustainable agriculture and food production.

Article Abstract

Drought stress imposes a serious threat to crop productivity and nutritional security. Drought adaptation mechanisms involve complex regulatory network comprising of various sensory and signaling molecules. In this context, melatonin has emerged as a potential signaling molecule playing a crucial role in imparting stress tolerance in plants. Melatonin pretreatment regulates various plant physiological processes such as osmoregulation, germination, photosynthesis, senescence, primary/secondary metabolism, and hormonal cross-talk under water deficit conditions. Melatonin-mediated regulation of ascorbate-glutathione (AsA-GSH) cycle plays a crucial role to scavenge reactive oxygen species generated in the cells during drought. Here, in this review, the current knowledge on the role of melatonin to ameliorate adverse effects of drought by modulating morphological, physiological, and redox regulatory processes is discussed. The role of melatonin to improve water absorption capacity of roots by regulating aquaporin channels and hormonal cross-talk involved in drought stress mitigation are also discussed. Overall, melatonin is a versatile bio-molecule involved in growth promotion and yield enhancement under drought stress that makes it a suitable candidate for eco-friendly crop production to ensure food security.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.13307DOI Listing

Publication Analysis

Top Keywords

drought stress
16
stress mitigation
8
crucial role
8
hormonal cross-talk
8
role melatonin
8
drought
7
stress
5
melatonin
5
mechanistic insights
4
insights melatonin-mediated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!