Understanding the Role of Surface Heterogeneities in Electrosynthesis Reactions.

iScience

School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA.

Published: December 2020

In this perspective, we highlight the role of surface heterogeneity in electrosynthesis reactions. Heterogeneities may come in the form of distinct crystallographic facets, boundaries between facets or grains, or point defects. We approach this topic from a foundation of surface science, where signatures from model systems provide understanding of observations on more complex and higher-surface-area materials. In parallel, probe-based techniques can inform directly on spatial variation across electrode surfaces. We call attention to the role spectroscopy can play in understanding the impact of these heterogeneities in electrocatalyst activity and selectivity, particularly where these surface features have effects extending into the electrolyte double layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708810PMC
http://dx.doi.org/10.1016/j.isci.2020.101814DOI Listing

Publication Analysis

Top Keywords

role surface
8
electrosynthesis reactions
8
understanding role
4
surface
4
surface heterogeneities
4
heterogeneities electrosynthesis
4
reactions perspective
4
perspective highlight
4
highlight role
4
surface heterogeneity
4

Similar Publications

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

Co-inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1), known as immune checkpoints, regulate the activity of T and myeloid cells during chronic viral infections and are well-established for their roles in cancer therapy. However, their involvement in chronic bacterial infections, particularly those caused by pathogens endemic to developing countries, such as Mycobacterium tuberculosis (Mtb), remains incompletely understood. Cytokine microenvironment determines the expression of co-inhibitory molecules in tuberculosis: Results indicate that the cytokine IL-12, in the presence of Mtb antigens, can enhance the expression of co-inhibitory molecules while preserving the effector and memory phenotypes of CD4+ T cells.

View Article and Find Full Text PDF

CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy.

View Article and Find Full Text PDF

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!