Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disease caused by the functional defect of alanine-glyoxylate aminotransferase that results in the overproduction of oxalate. It can be devastating especially for kidneys, leading to end-stage renal disease (ESRD) during the first 2 to 3 decades of life in most patients. Consequently, many PH1 patients need kidney transplantation. However, because PH1 is caused by a liver enzyme deficiency, the only cure of the metabolic defect is liver transplantation. Thus, current transplant strategies to treat PH1 patients with ESRD include dual liver-kidney transplantation. However, the morbidity and mortality associated with liver transplantation make these strategies far from optimal. Fortunately, a therapeutic revolution is looming. Indeed, innovative drugs are being currently tested in clinical trials, and preliminary data show impressive efficacy to reduce the hepatic overproduction of oxalate. Hopefully, with these therapies, liver transplantation will no longer be necessary. However, some patients with progressing renal disease or those who will be diagnosed with PH1 at an advanced stage of chronic kidney disease will ultimately need kidney transplantation. Here we review the current knowledge on this subject and discuss the future of kidney transplant management in PH1 patients in the era of novel therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7710835PMC
http://dx.doi.org/10.1016/j.ekir.2020.09.022DOI Listing

Publication Analysis

Top Keywords

ph1 patients
12
liver transplantation
12
primary hyperoxaluria
8
hyperoxaluria type
8
overproduction oxalate
8
renal disease
8
kidney transplantation
8
disease will
8
transplantation
7
ph1
6

Similar Publications

Purpose Of Review: Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of hepatic glyoxylate metabolism leading to nephrolithiasis and kidney failure. PH1 is caused by mutations on the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT). The AGXT gene has two haplotypes, the major (Ma) and the minor (mi) alleles.

View Article and Find Full Text PDF
Article Synopsis
  • - Glyoxylate, a toxic byproduct of metabolism, is rapidly converted into oxalate, necessitating effective detoxification systems in various cell compartments, with key enzymes AGT and GRHPR involved in this process.
  • - Mutations in genes encoding AGT and GRHPR lead to primary hyperoxaluria types 1 and 2, respectively, while a defect in the HOGA1 enzyme is associated with type 3, all resulting in serious kidney issues such as nephrocalcinosis and potential kidney failure.
  • - Recent advancements in therapies, particularly RNAi-based treatments (lumasiran and nedosiran), are improving outcomes for primary hyperoxaluria, with nedosiran targeting all
View Article and Find Full Text PDF

Hyperoxaluria is a condition in which there is a pathologic abundance of oxalate in the urine through either hepatic overproduction (primary hyperoxaluria [PH]) or excessive enteric absorption of dietary oxalate (enteric hyperoxaluria [EH]). Severity can vary with the most severe forms causing kidney failure and extrarenal manifestations. To address the current challenges and innovations in hyperoxaluria, the 14th International Hyperoxaluria Workshop convened in Perugia, Italy, bringing together international experts for focused presentation and discussion.

View Article and Find Full Text PDF
Article Synopsis
  • A 46-year-old woman with chronic kidney issues and kidney stones was diagnosed with primary hyperoxaluria type 1 (PH1) through a bone marrow biopsy.
  • Genetic testing revealed a specific mutation (p.Ile244Thr) in the AGXT gene, which is linked to the disorder.
  • The paper emphasizes the need for early diagnosis of kidney stone issues, especially in families with a history of the condition, to avoid severe kidney damage and systemic complications.
View Article and Find Full Text PDF

Intrafamilial Disease Heterogeneity in Primary Hyperoxaluria Type 1.

Kidney Int Rep

October 2024

Institute of Human Genetics, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany.

Introduction: Primary hyperoxaluria type 1 (PH1) is known for its variable clinical course, even within families. However, the extent of this heterogeneity has not been well-studied. We aimed to analyze intrafamilial clinical heterogeneity and disease course among siblings in a large cohort of familial PH1 cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!