Canine intervertebral disc disease (IVDD) represents a significant clinical problem in veterinary medicine, with similarities to the human pathology. Host-derived damage-associated molecular patterns like fibronectin fragments (FnF) that develop during tissue dysfunction may be of specific relevance to IVD pathologies by inducing an inflammatory response in resident cells. This project aimed to determine the presence and pathobiological role of FnF during IVD herniation in dogs, with a focus on inflammation. Herniated nucleus pulposus (NP) material from five dogs as well as non-herniated adjacent NP material from three dogs was collected during spinal surgery required due to acute IVD herniation. The presence of different types of FnF were determined by Western blot analysis. NP cells isolated from six herniated canine IVDs were then exposed to 30 kDa FnF. NP cell inflammation and catabolism was examined by investigating the expression of IL-1β, IL-6, IL-8, and COX-2, as well as MMP-1 and MMP-3 by qPCR (all targets) and ELISA (IL-6, PGE). Amongst multiple sized FnF (30, 35, 45, and >170kDa), N-terminal fragments at a size of ~30 kDa were most consistently expressed in all five herniated IVDs. Importantly, these fragments were exclusively present in herniated, but not in non-herniated IVDs. Exposure of canine NP cells to 500 nM 30 kDa FnF caused a significant upregulation of IL-6 (62.5 ± 79.9, = 0.032) and IL-8 (53.0 ± 75.7, = 0.031) on the gene level, whereas IL-6 protein analysis was inconclusive. Donor-donor variation was observed in response to FnF treatment, whereby this phenomenon was most evident for COX-2, with three donors demonstrating a significant downregulation (0.67 ± 0.03, = 0.003) and three donors showing upregulation (6.9 ± 5.5, = 0.21). Co-treatment with Sparstolonin B, a TRL-2/TRL-4 antagonist, showed no statistical difference to FnF treatment alone in all tested target genes. Given the presence of the 30 kDa FnF in canine herniated IVDs and the proinflammatory effect of 30 kDa FnF on NP cells, we concluded that the accumulation of FnF may be involved in the pathogenesis of canine IVDD. These results correspond to the findings in humans with IVDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7701143 | PMC |
http://dx.doi.org/10.3389/fvets.2020.547644 | DOI Listing |
Food Res Int
August 2022
Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal. Electronic address:
This work proposes an innovative approach to valorise swine blood based on enzymatic hydrolysis and membrane fractionations. Hydrolysis with Cynara cardunculus enzymes, followed by microfiltration and double nanofiltration generated three high protein fractions, retentate of microfiltration (RMF; >0.5 µm) and retentate of nanofiltration (RNF; >3 kDa) with approximately 90% of protein on a dry basis and filtrate of nanofiltrate (FNF; <3 kDa) with 65%.
View Article and Find Full Text PDFJ Clin Med
September 2021
Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
Proteolytic fragments of fibronectin can have catabolic effects on cartilage, menisci, and synovium. Previous studies have reported that Toll-like receptor (TLR) signaling pathways might be associated with joint inflammation and joint destruction. Platelet-rich plasma (PRP) is increasingly being used to treat a range of joint conditions; however, it has yet to be determined whether PRP influences fibronectin fragment (FN-f) procatabolic activity and TLRs.
View Article and Find Full Text PDFSci Rep
April 2021
Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyungchon, Anyang, Gyeonggi, 14068, Korea.
Tonicity-responsive enhancer-binding protein (TonEBP; nuclear factor of activated T cells 5) is a transcription factor that responds to changes in osmolality. However, recent studies have shown that it also modulates immune responses under inflammatory conditions independently of hyperosmolality. Fibronectin fragments (FN-fs), which are abundant in the synovial fluid of patients with osteoarthritis (OA), induce expression of matrix metalloproteinases (MMPs) via the toll-like receptor-2 (TLR-2) signaling pathway.
View Article and Find Full Text PDFFront Vet Sci
November 2020
Department of Health Sciences and Technology, Institute for Biomechanics, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland.
Canine intervertebral disc disease (IVDD) represents a significant clinical problem in veterinary medicine, with similarities to the human pathology. Host-derived damage-associated molecular patterns like fibronectin fragments (FnF) that develop during tissue dysfunction may be of specific relevance to IVD pathologies by inducing an inflammatory response in resident cells. This project aimed to determine the presence and pathobiological role of FnF during IVD herniation in dogs, with a focus on inflammation.
View Article and Find Full Text PDFBMB Rep
May 2019
Division of Rheumatology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang 14068; Institute for Skeletal Aging, Hallym University, Chunchon 24251, Korea.
The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!