A conceptual study on real-time adaptive radiation therapy optimization through ultra-fast beamlet control.

Biomed Phys Eng Express

Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637-1470, United States of America.

Published: August 2019

A central problem in the field of radiation therapy (RT) is how to optimally deliver dose to a patient in a way that fully accounts for anatomical position changes over time. As current RT is a static process, where beam intensities are calculated before the start of treatment, anatomical deviations can result in poor dose conformity. To overcome these limitations, we present a simulation study on a fully dynamic real-time adaptive radiation therapy (RT-ART) optimization approach that uses ultra-fast beamlet control to dynamically adapt to patient motion in real-time. A virtual RT-ART machine was simulated with a rapidly rotating linear accelerator (LINAC) source (60 RPM) and a binary 1D multi-leaf collimator (MLC) operating at 100 Hz. If the real-time tracked target motion exceeded a predefined threshold, a time dependent objective function was solved using fast optimization methods to calculate new beamlet intensities that were then delivered to the patient. To evaluate the approach, system response was analyzed for patient derived continuous drift, step-like, and periodic intra-fractional motion. For each motion type investigated, the RT-ART method was compared against the ideal case with no patient motion (static case) as well as to the case without the use RT-ART. In all cases, isodose lines and dose-volume-histograms (DVH) showed that RT-ART plan quality was approximately the same as the static case, and considerably better than the no RT-ART case. Based on tests using several different motion types, RT-ART was able to recover dose conformity to the level that it was similar to an ideal RT delivery with no anatomical changes. With continued advances in real-time patient motion tracking and fast computational processes, there is significant potential for the RT-ART optimization process to be realized on next generation RT machines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725270PMC
http://dx.doi.org/10.1088/2057-1976/ab3ba9DOI Listing

Publication Analysis

Top Keywords

radiation therapy
12
patient motion
12
real-time adaptive
8
adaptive radiation
8
ultra-fast beamlet
8
beamlet control
8
dose conformity
8
rt-art
8
rt-art optimization
8
static case
8

Similar Publications

Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.

Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.

View Article and Find Full Text PDF

Introduction: Sarcomas are rare cancers originating from mesenchymal tissues, manifesting in diverse anatomical locations, but notably in connective tissue, muscles and the skeleton. Thoracic sarcomas present a unique diagnostic and surgical challenge attributable to their rarity and pathoanatomy. Standard practice currently comprises wide surgical excision, often accompanied by adjuvant chemotherapy and/or radiotherapy.

View Article and Find Full Text PDF

Background: Dermatomyositis is a chronic inflammatory condition affecting muscles and skin, often associated with an increased risk of cancer. Specific autoantibodies, including anti-TIF1 (Transcription Intermediary Factor 1), have been linked to this risk. We present a case of dermatomyositis in a male patient positive for anti-TIF1 antibodies, subsequently diagnosed with squamous cell carcinoma of the tonsil, a novel association not previously documented.

View Article and Find Full Text PDF

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Retraction Note: Comment on - Is add-on Bevacizumab therapy to Temozolomide and radiotherapy associated with clinical utility for newly diagnosed Glioblastoma? A systematic review and meta-analysis.

Neurosurg Rev

January 2025

Lab in Biotechnology and Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-77, Tamil Nadu, India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!