Population genomics is a useful tool to support integrated pest management as it can elucidate population dynamics, demography, and histories of invasion. Here, we use a restriction site-associated DNA sequencing approach combined with whole-genome amplification (WGA) to assess genomic population structure of a newly described pest of canola, the diminutive canola flower midge, . Clustering analyses recovered little geographic structure across the main canola production region but differentiated several geographically disparate populations at edges of the agricultural zone. Given a lack of alternative hypotheses for this pattern, we suggest these data support alternative hosts for this species and thus our canola-centric view of this midge as a pest has limited our understanding of its biology. These results speak to the need for increased surveying efforts across multiple habitats and other potential hosts within Brassicaceae to improve both our ecological and evolutionary knowledge of this species and contribute to effective management strategies. We additionally found that use of WGA prior to library preparation was an effective method for increasing DNA quantity of these small insects prior to restriction site-associated DNA sequencing and had no discernible impact on genotyping consistency for population genetic analysis; WGA is therefore likely to be tractable for other similar studies that seek to randomly sample markers across the genome in small organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713945 | PMC |
http://dx.doi.org/10.1002/ece3.6927 | DOI Listing |
Nat Commun
January 2025
Department of Life Sciences, Imperial College London, London, UK.
Genetic control - the deliberate introduction of genetic traits to control a pest or vector population - offers a powerful tool to augment conventional mosquito control tools that have been successful in reducing malaria burden but that are compromised by a range of operational challenges. Self-sustaining genetic control strategies have shown great potential in laboratory settings, but hesitancy due to their invasive and persistent nature may delay their implementation. Here, instead, we describe a self-limiting strategy, designed to have geographically and temporally restricted effect, based on a Y chromosome-linked genome editor (YLE).
View Article and Find Full Text PDFPlant Dis
December 2024
Clemson University - EREC, Plant and Environmental Sciences, 64 Research Road, Blackville, South Carolina, United States, 29817;
Glossy abelia (Abelia × grandiflora) is an evergreen ornamental shrub used in landscaping globally. From Jun. 2023 to Feb.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, China.
Background: Discovering insecticidal proteins with high activity and strict insect specificity and applying them to the biological control of insect pests is of great significance. Oral LqhIT2 has insecticidal activity, which most other insecticidal neurotoxin proteins do not have, but the large-scale preparation of the toxin is difficult and one of the obstacles to determining its anti-insect potential for biological control.
Results: In this study, the expression level of recombinant LqhIT2 (rLqhIT2) in Pichia pastoris was as high as 1.
Integr Zool
December 2024
State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Spatiotemporal interactions between predators and prey are central to maintaining sustainable functioning ecosystems and community stability. For wild ungulates and their predators, livestock grazing is an important anthropogenic disturbance causing population declines and modifying their interactions over time and space. However, it is poorly understood how fine-scale grazing affects the spatiotemporal responses of predators, prey, and their interactions.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
The production of healthy agricultural products has increased the demand for innovative and sustainable plant protection technologies. RNA interference (RNAi), described as post-transcriptional gene silencing, offers great opportunities for developing RNA pesticides for sustainable disease and pest control. Compared with traditional synthesized pesticides, RNA pesticides possess many advantages, such as strong targeting, good environmental compatibility, and an easy development process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!