A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated facial recognition for wildlife that lack unique markings: A deep learning approach for brown bears. | LitMetric

Emerging technologies support a new era of applied wildlife research, generating data on scales from individuals to populations. Computer vision methods can process large datasets generated through image-based techniques by automating the detection and identification of species and individuals. With the exception of primates, however, there are no objective visual methods of individual identification for species that lack unique and consistent body markings. We apply deep learning approaches of facial recognition using object detection, landmark detection, a similarity comparison network, and an support vector machine-based classifier to identify individuals in a representative species, the brown bear . Our open-source application, , detects a bear's face in an image, rotates and extracts the face, creates an "embedding" for the face, and uses the embedding to classify the individual. We trained and tested the application using labeled images of 132 known individuals collected from British Columbia, Canada, and Alaska, USA. Based on 4,674 images, with an 80/20% split for training and testing, respectively, we achieved a facial detection (ability to find a face) average precision of 0.98 and an individual classification (ability to identify the individual) accuracy of 83.9%. and its annotated source code provide a replicable methodology for applying deep learning methods of facial recognition applicable to many other species that lack distinguishing markings. Further analyses of performance should focus on the influence of certain parameters on recognition accuracy, such as age and body size. Combining with camera trapping could facilitate fine-scale behavioral research such as individual spatiotemporal activity patterns, and a cost-effective method of population monitoring through mark-recapture studies, with implications for species and landscape conservation and management. Applications to practical conservation include identifying problem individuals in human-wildlife conflicts, and evaluating the intrapopulation variation in efficacy of conservation strategies, such as wildlife crossings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713984PMC
http://dx.doi.org/10.1002/ece3.6840DOI Listing

Publication Analysis

Top Keywords

facial recognition
12
deep learning
12
lack unique
8
identification species
8
species lack
8
individuals
5
species
5
individual
5
automated facial
4
recognition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!