The application of drought stress-regulating transcription factors (TFs) offers a credible way to improve drought tolerance in plants. However, many drought resistant TFs always showed unintended adverse effects on plant growth or other traits. Few studies have been conducted in trees to evaluate and overcome the pleiotropic effects of drought tolerance TFs. Here, we report the dose-dependent effect of the gene on its overexpression in . High- and moderate-level overexpression of significantly increased drought tolerance in a dose-dependent manner. However, the OE18 plants showed stunted growth under normal conditions, but they were also more sensitive to infection than wild type (WT) and OE14 plants. While, OE14 showed normal growth, the pathogen tolerance of them was not significantly different from WT. Many stress-responsive genes were up-regulated in OE18 and OE14 compared to WT, especially for OE18 plants. Meanwhile, more pathogen tolerance related genes were down-regulated in OE18 compared to OE14 and WT plants. We achieved improved drought tolerance by adjusting the increased levels of exogenous genes to avoid the occurrence of growth reduction and reduced disease tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693672PMC
http://dx.doi.org/10.3389/fpls.2020.528550DOI Listing

Publication Analysis

Top Keywords

drought tolerance
16
tolerance
8
disease tolerance
8
oe18 plants
8
oe14 plants
8
pathogen tolerance
8
drought
7
growth
5
plants
5
overexpression levels
4

Similar Publications

Freshwater waterways, and species that depend on them, are threatened by urbanisation and the consequences of the urban stream syndrome. In south-east Queensland, Australia, little is known about the impacts of the urban stream syndrome on the platypus (), meaning that populations cannot be adequately managed by conservation practitioners. The aim of this study was to determine how habitat and environmental variables, related to the urban stream syndrome, influenced platypus distribution across this region.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

SCPL48 regulates the vessel cell programmed cell death during xylem development in Arabidopsis thaliana.

Int J Biol Macromol

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. Electronic address:

Secondary cell wall (SCW) deposition is tightly coordinated with programmed cell death (PCD) during xylem development and plays a crucial role in plant stress responses. In this study, we characterized a serine carboxypeptidase-like gene, SCPL48, which exhibits xylem cell-specific expression patterns in stem xylem during vascular development. The scpl48 plants exhibited reduced stem xylem cell numbers, particularly vessel cells, accompanied by delayed organelle degradation during PCD and increased secondary wall thickness in xylem vessel cells.

View Article and Find Full Text PDF

Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS).

View Article and Find Full Text PDF

Adaptation to drought is one of the most important challenges for agriculture. The root system, and its integration with the soil, is fundamental in conferring drought tolerance. At the same time, it is extremely challenging to study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!