Osmoregulation and osmoconformation are two mechanisms through which aquatic animals adapt to salinity fluctuations. The euryhaline crab Scylla paramamosain, being both an osmoconformer and osmoregulator, is an excellent model organism to investigate salinity adaptation mechanisms in brachyurans. In the present study, we used transcriptomic and proteomic approaches to investigate the response of S. paramamosain to salinity stress. Crabs were transferred from a salinity of 25 ppt to salinities of 5 ppt or 33 ppt for 6 h and 10 days. Data from both approaches revealed that exposure to 5 ppt resulted in upregulation of ion transport and energy metabolism associated genes. Notably, acclimation to low salinity was associated with early changes in gene expression for signal transduction and stress response. In contrast, exposure to 33 ppt resulted in upregulation of genes related to amino acid metabolism, and amino acid transport genes were upregulated only at the early stage of acclimation to this salinity. Our study reveals contrasting mechanisms underlying osmoregulation and osmoconformation within the salinity range of 5-33 ppt in the mud crab, and provides novel candidate genes for osmotic signal transduction, thereby providing insights on understanding the salinity adaptation mechanisms of brachyuran crabs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7728780PMC
http://dx.doi.org/10.1038/s41598-020-78351-wDOI Listing

Publication Analysis

Top Keywords

osmoregulation osmoconformation
12
crab scylla
8
scylla paramamosain
8
salinity
8
salinity adaptation
8
adaptation mechanisms
8
exposure ppt
8
ppt upregulation
8
signal transduction
8
amino acid
8

Similar Publications

Acute metabolic responses of two marine brachyuran crabs to dilute seawater: The aerobic cost of hyper regulation.

J Exp Zool A Ecol Integr Physiol

July 2023

Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.

Hepatus pudibundus ("flecked box crab") is a stenohaline osmoconfomer, and restricted to marine habitats. Callinectes danae ("swimming crab Dana") lives in coastal/estuarine waters and is a weak hyper regulator. There is no consensus on which strategy is more expensive metabolically face salinity challenges: conformation with higher dependence on cell volume regulation, or hyper regulation, alleviating the need for intense cell volume regulation.

View Article and Find Full Text PDF

To evaluate the physiological ability to adjust to environmental variations of salinity, Carcinus maenas were maintained in 10, 20, 32 (control), 40, and 50 ppt (13.8 ± 0.6 °C) for 7 days.

View Article and Find Full Text PDF

Osmoregulation and osmoconformation are two mechanisms through which aquatic animals adapt to salinity fluctuations. The euryhaline crab Scylla paramamosain, being both an osmoconformer and osmoregulator, is an excellent model organism to investigate salinity adaptation mechanisms in brachyurans. In the present study, we used transcriptomic and proteomic approaches to investigate the response of S.

View Article and Find Full Text PDF

The term "allostasis", meaning the assumption that homeostasis may not be as static as the term implies, has been vastly employed for mammals, and other vertebrates, for which the degree of internal stability is maximal, according to their higher complexity. We have here investigated how these states of homeostasis, allostasis, and allostatic overload could be diagnosed in decapod crustaceans, upon acute salinity challenges. Decapods of distinct lineages and habitats have been submitted to 3 salinity levels for 6 and 12 h.

View Article and Find Full Text PDF

Osmoionic homeostasis in bivalve mollusks from different osmotic niches: Physiological patterns and evolutionary perspectives.

Comp Biochem Physiol A Mol Integr Physiol

February 2020

Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, FURG, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Brazil. Electronic address:

Physiological knowledge gained from questions focused on the challenges faced and strategies recruited by organisms in their habitats assumes fundamental importance about understanding the ability to survive when subjected to unfavorable situations. In the aquatic environment, salinity is particularly recognized as one of the main abiotic factors that affects the physiology of organisms. Although the physiological patterns and challenges imposed by each occupied environment are distinct, they tend to converge to osmotic oscillations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!