COVID-19 is a respiratory tract infection that can range from being mild to fatal. In India, the countrywide lockdown has been imposed since 24th march 2020, and has got multiple extensions with different guidelines for each phase. Among various models of epidemiology, we use the SIR(D) model to analyze the extent to which this multi-phased lockdown has been active in 'flattening the curve' and lower the threat. Analyzing the effect of lockdown on the infection may provide a better insight into the evolution of epidemic while implementing the quarantine procedures as well as improving the healthcare facilities. For accurate modelling, incorporating various parameters along with sophisticated computational facilities are required. Parallel to SIRD modelling, we tend to compare it with the Ising model and derive a quantum circuit that incorporates the rate of infection and rate of recovery, etc as its parameters. The probabilistic plots obtained from the circuit qualitatively resemble the shape of the curve for the spread of Coronavirus. We also demonstrate how the curve flattens when the lockdown is imposed. This kind of quantum computational approach can be useful in reducing space and time complexities of a huge amount of information related to the epidemic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729942 | PMC |
http://dx.doi.org/10.1038/s41598-020-78652-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!