Background: We assessed whether Toll-like receptor (TLR)2 activation boosts the innate immune response to rhinovirus infection, as a treatment strategy for virus-induced respiratory diseases.
Methods: We employed treatment with a novel TLR2 agonist (INNA-X) prior to rhinovirus infection in mice, and INNA-X treatment in differentiated human bronchial epithelial cells derived from asthmatic-donors. We assessed viral load, immune cell recruitment, cytokines, type I and III interferon (IFN) production, as well as the lung tissue and epithelial cell immune transcriptome.
Results: We show, , that a single INNA-X treatment induced innate immune priming characterised by low-level IFN-λ, Fas ligand, chemokine expression and airway lymphocyte recruitment. Treatment 7 days before infection significantly reduced lung viral load, increased IFN-β/λ expression and inhibited neutrophilic inflammation. Corticosteroid treatment enhanced the anti-inflammatory effects of INNA-X. Treatment 1 day before infection increased expression of 190 lung tissue immune genes. This tissue gene expression signature was absent with INNA-X treatment 7 days before infection, suggesting an alternate mechanism, potentially establishment of immune cell-mediated mucosal innate immunity. , INNA-X treatment induced a priming response defined by upregulated IFN-λ, chemokine and anti-microbial gene expression that preceded an accelerated response to infection enriched for nuclear factor (NF)-κB-regulated genes and reduced viral loads, even in epithelial cells derived from asthmatic donors with intrinsic delayed anti-viral immune response.
Conclusion: Airway epithelial cell TLR2 activation induces prolonged innate immune priming, defined by early NF-κB activation, IFN-λ expression and lymphocyte recruitment. This response enhanced anti-viral innate immunity and reduced virus-induced airway inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1183/13993003.01584-2020 | DOI Listing |
Am J Respir Cell Mol Biol
December 2023
Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia.
Respiratory virus infections initiate and transmit from the upper respiratory tract (URT). Coronaviruses, including OC43, are a major cause of respiratory infection and disease. Failure to mount an effective antiviral immune response in the nasal mucosa increases the risk of severe disease and person-to-person transmission, highlighting the need for URT infection models to support the development of nasal treatments that improve coronavirus antiviral immunity.
View Article and Find Full Text PDFEur Respir Rev
June 2022
Viral Immunology and Respiratory Disease Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
Respiratory virus infections initiate in the upper respiratory tract (URT). Innate immunity is critical for initial control of infection at this site, particularly in the absence of mucosal virus-neutralising antibodies. If the innate immune response is inadequate, infection can spread to the lower respiratory tract (LRT) causing community-acquired pneumonia (as exemplified by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/coronavirus disease 2019).
View Article and Find Full Text PDFEur Respir J
July 2021
Viral Immunology and Respiratory Disease group, University of Newcastle, Newcastle, Australia
Background: We assessed whether Toll-like receptor (TLR)2 activation boosts the innate immune response to rhinovirus infection, as a treatment strategy for virus-induced respiratory diseases.
Methods: We employed treatment with a novel TLR2 agonist (INNA-X) prior to rhinovirus infection in mice, and INNA-X treatment in differentiated human bronchial epithelial cells derived from asthmatic-donors. We assessed viral load, immune cell recruitment, cytokines, type I and III interferon (IFN) production, as well as the lung tissue and epithelial cell immune transcriptome.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!