Download full-text PDF

Source
http://dx.doi.org/10.1183/13993003.03104-2020DOI Listing

Publication Analysis

Top Keywords

free-breathing mri
4
mri monitoring
4
monitoring ventilation
4
ventilation changes
4
changes antibiotic
4
antibiotic treatment
4
treatment pulmonary
4
pulmonary exacerbations
4
exacerbations paediatric
4
paediatric cystic
4

Similar Publications

Objective: This study aims to evaluate the efficacy of two free-breathing magnetic resonance imaging (MRI) sequences-spiral ultrashort echo time (spiral UTE) and radial volumetric interpolated breath-hold examination (radial VIBE).

Methods: Patients were prospectively enrolled between February 2021 and September 2022. All participants underwent both 3T MRI scanning, utilizing the radial VIBE sequence and spiral UTE sequence, as well as standard chest CT imaging.

View Article and Find Full Text PDF

High-Resolution Free-Breathing Chemical-Shift-Encoded MRI for Characterizing Lymph Nodes in the Upper Abdomen.

Invest Radiol

January 2025

From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).

Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.

View Article and Find Full Text PDF

Quantitative abdominal magnetic resonance imaging (MRI) offers non-invasive, objective assessment of diseases in the liver, pancreas, and other organs and is increasingly being used in the pediatric population. Certain quantitative MRI techniques, such as liver proton density fat fraction (PDFF), R2* mapping, and MR elastography, are already in wide clinical use. Other techniques, such as liver T1 mapping and pancreas quantitative imaging methods, are emerging and show promise for enhancing diagnostic sensitivity and treatment monitoring.

View Article and Find Full Text PDF

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Artifacts at Cardiac MRI: Imaging Appearances and Solutions.

Radiographics

January 2025

From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).

Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!