Radiation-induced myelopathy is a devastating late effect of radiotherapy. Fortunately, this late effect is exceptional. The clinical presentation of radiation myelopathy is aspecific, typically occurring between 6 to 24 months after radiotherapy, and radiation-induced myelopathy remains a diagnosis of exclusion. Magnetic resonance imaging is the most commonly used imaging tool. Radiation oncologists must be extremely cautious to the spinal cord dose, particularly in stereotactic radiotherapy and reirradiation. Conventionally, a maximum dose of 50Gy is tolerated in normofractionated radiotherapy (1.8 to 2Gy per fraction). Repeat radiotherapies lead to consider cumulative doses above this recommendation to offer individualized reirradiation. Several factors increase the risk of radiation-induced myelopathy, such as concomitant or neurotoxic chemotherapy. The development of predictive algorithms to prevent the risk of radiation-induced myelopathy is promising. However, radiotherapy prescription should be cautious, regarding to ALARA principle (as low as reasonably achievable). As the advent of immunotherapy has improved patient survival data and the concept of oligometastatic cancer is increasing in daily practice, stereotactic treatments and reirradiations will be increasingly frequent indications. Predict the risk of radiation-induced myelopathy is therefore a major issue in the following years, and remains a daily challenge for radiation oncologists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canrad.2020.05.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!