The design and control of an intelligent integrated standalone micro-grid (I-ISMG) have been proposed in this study. The ISMG system consists of solar photovoltaic (SPV), wind turbine generator (WTG), diesel engine generator (DEG) as distributed power generation (PG), and battery and flywheel as energy storage systems (ESSs). An improved incremental conductance (I-InC) maximum power point (MPP) tracking (MPPT) scheme, and a fuzzy wind power generation model (FWPGM) are utilized to obtain the power from solar, and wind energy systems respectively. The key contribution of this work is to control the power flow for synchronous micro-grid (MG) operation, which in turn resolves the problem of load frequency control (LFC). In this control strategy, an intelligent, i.e. fuzzy logic-based adaptive control scheme is proposed for the coordinated power flow among the generation, demand, and storage system. To minimize the frequency deviation (Δf) and control of PG from WTG and DEG, frequency support (FS) fuzzy logic-based droop characteristic is employed. For the droop control in WTG and DEG, fuzzy logic-based proportional-integral-derivative (F-PID), and self-tuned-fuzzy PID (STF-PID) control schemes are utilized respectively. Apart from droop controls, a fuzzy observer (FO) is designed to manage power flow to/from the storage systems. Further, the proposed control scheme has been benchmarked using single area power system (SAPS) and modified New England IEEE 39 bus system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2020.12.002 | DOI Listing |
Lung
January 2025
National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Purpose: This study examined the concavity (angle β, central and peripheral concavity) of the descending limb of the maximal expiratory flow-volume (MEFV) curves to reflect various ventilatory defects, including obstructive, restrictive, or mixed patterns.
Methods: We conducted a cross-sectional study collecting spirometry data from a healthcare center and a tertiary hospital between 2017 and 2022, with additional raw flow-volume curve data from primary healthcare institutions in 2023. We analyzed differences in concavity between spirometric patterns.
Cancer Immunol Immunother
January 2025
National Centre for Asbestos Related Diseases, The University of Western Australia, Perth, Australia.
Combination immune checkpoint inhibitors (nivolumab and ipilimumab) are currently a first-line treatment for mesothelioma; however, not all patients respond. The efficacy of treatment is influenced by the tumor microenvironment. Murine mesothelioma tumors were irritated with various radiotherapy doses.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185, USA.
Magnetic insulation of electrons prevents losses and can be applied to generating radiation or electron sources for high current and high power applications. Ion emission from the anode may degrade magnetic insulation. We develop equilibrium theory, self-consistently coupling magnetically insulated electron flow with free-flowing injected ions.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, 100084 China.
Flow experience, characterized by immersion in the activity at hand, provides a motivational boost and promotes positive behaviors. However, the oscillatory representations of flow experience are still poorly understood. In this study, the difficulty of the video game was adjusted to manipulate the individual's personalized flow or non-flow state, and EEG data was recorded throughout.
View Article and Find Full Text PDFBMC Biomed Eng
January 2025
William B. Burnsed Jr. Department of Mechanical, Aerospace, and Biomedical Engineering, University of South Alabama, 150 Student Services Drive, Mobile, AL, 36688, USA.
Background: The ST response to high frequency EM heating may give an indication of rate of BF in underlying tissue. This novel method, which we have termed REFLO (Rapid Electromagnetic Flow) has potential for applications such as detection of PAD. The method utilizes the relationship between blood flow rate and tissue temperature increase during exposure to radio frequency (RF) energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!