A novel luminol chemiluminescence system induced by black phosphorus quantum dots for cobalt (II) detection.

Talanta

Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China. Electronic address:

Published: February 2021

Black phosphorus quantum dots (BP QDs) were prepared through a solvothermal exfoliation method in alkaline N-methyl-2-pyrrolidinone. The BP QDs induce distinct chemiluminescence (CL) of alkaline luminol directly. A possible reaction mechanism is proposed by the study of CL spectrum, ultraviolet-visible absorption spectra, electron paramagnetic resonance spectra as well as radical scavenging experiments. The presence of BP QDs significantly increases generation of active oxygen species, which oxidize luminol and lead to intense CL emission at 425 nm. The reaction of luminol with BP QDs are specifically catalyzed by cobalt (II) ion, this presents a sensitive CL method for cobalt (II) ion. A linear response range extends from 2.5 to 2000.0 pmol/L cobalt (II) ion and a detection limit of 0.7 pmol/L (3s) is acquired. The method displays a good precision approved by a relative standard deviation of 1.9% at 100.0 pmol/L cobalt (II) ion solution (n = 11). A preliminary application of the method was conducted by successful determination of cobalt amount in silica gel and rain water samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121712DOI Listing

Publication Analysis

Top Keywords

cobalt ion
16
black phosphorus
8
phosphorus quantum
8
quantum dots
8
cobalt
6
novel luminol
4
luminol chemiluminescence
4
chemiluminescence system
4
system induced
4
induced black
4

Similar Publications

This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.

View Article and Find Full Text PDF

Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.

View Article and Find Full Text PDF

Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.

View Article and Find Full Text PDF

The main limitations of aqueous nickel-zinc batteries are their relatively low energy density and short cycle life, which are inextricably linked to the limitations of nickel-based cathodes. In this study, a low-crystallinity flower-like cobalt-doped nickel hydroxide (α-Ni(OH)-0.2Co) is constructed by hydrothermal reaction and employed as high-energy-density cathode for aqueous rechargeable nickel-zinc batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!