All-inorganic solid-state batteries (SSBs) currently attract much attention as next-generation high-density energy-storage technology. However, to make SSBs competitive with conventional Li-ion batteries, several obstacles and challenges must be overcome, many of which are related to interface stability issues. Protective coatings can be applied to the electrode materials to mitigate side reactions with the solid electrolyte, with lithium transition metal oxides, such as LiNbO or LiZrO, being well established in research. In addition, it has been recognized lately that carbonates incorporated into the coating may also positively affect the interface stability. In this work, we studied the effect that surface carbonates in case of LiZrO-coated Li(NiCoMn)O (NCM622) cathode material have on the cyclability of pellet stack SSB cells with LiPSCl and LiTiO as a solid electrolyte and an anode, respectively. Both carbonate-rich and carbonate-poor hybrid coatings were produced by altering the synthesis conditions. The best cycling performance was achieved for carbonate-deficient LiZrO-coated NCM622 due to decreased degradation of the argyrodite solid electrolyte at the interfaces, as determined by ex situ X-ray photoelectron spectroscopy and in situ differential electrochemical mass spectrometry. The results emphasize the importance of tailoring the composition and nature of protective coatings to improve the cyclability of bulk SSBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c18590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!