Aerosol jet printing of electronic devices is increasingly attracting interest in recent years. However, low capability and high resistance are still limitations of the printed electronic devices. In this paper, we introduce a novel post-treatment method to achieve a high-performance electric circuit. The electric circuit was printed with aerosol jet printing method on an ULTEM substrate. The ULTEM substrate was fabricated by the Fused Deposition Modelling method. After post-treatment, the electrical resistance of the printed electric circuit was changed from 236 mΩ to 47 mΩ and the electric property was enhanced. It was found that the reduction of electric resistance was caused by surface property changes. Different surface analysis methods including scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS) were used to understand the effectiveness of the proposed method. The results showed that the microsurface structure remained the same original structure before and after treatment. It was found that the surface carbon concentration was significantly increased after treatment. Detailed analysis showed that the C-C bond increased obviously after treatment. The change of electrical resistance was found to be limited to the material's surface. After polishing, the circuit resistance was changed back to its original value. As the electric circuit is the basic element of electric devices, the proposed method enables the fabrication of high performance devices such as capacitors, strain gauge, and other sensors, which has potential applications in many areas such as industrial, aerospace, and military usage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763611PMC
http://dx.doi.org/10.3390/ma13245602DOI Listing

Publication Analysis

Top Keywords

electric circuit
20
aerosol jet
12
post-treatment method
8
electric
8
printed electric
8
circuit printed
8
jet printing
8
electronic devices
8
ultem substrate
8
electrical resistance
8

Similar Publications

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Key shifts in frontoparietal network activity in Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.

View Article and Find Full Text PDF

Printed circuit boards represent an extraordinarily challenging fraction for the recycling of waste electric and electronic equipment. Due to the closely interlinked structure of the composing materials, the selective recycling of copper and closely associated precious metals from this composite material is compromised by losses during mechanical pre-processing. This problem could partially be overcome by a better understanding of the influence of particle size and shape on the recovery of finely comminuted and well-liberated metal particles during mechanical separation.

View Article and Find Full Text PDF

Perovskite retinomorphic image sensor for embodied intelligent vision.

Sci Adv

January 2025

Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!