AI Article Synopsis

  • The study focused on developing hybrid glass scaffolds that release calcium to enhance integration into bone tissue while maintaining mechanical strength.
  • Various calcium sources, including CaCl and bioactive glass microparticles, were tested for their release profiles; lower CaCl concentrations showed more controlled release, while BG-MP provided a linear release over 12 weeks.
  • In cell culture tests with osteoblast-like cells, the integration of these calcium sources did not significantly improve osteogenic differentiation, possibly due to the consumption of released calcium ions by formed mineral layers.

Article Abstract

In this study, we integrated different calcium sources into sol-gel hybrid glass scaffolds with the aim of producing implants with long-lasting calcium release while maintaining mechanical strength of the implant. Calcium(II)-release was used to introduce bioactivity to the material and eventually support implant integration into a bone tissue defect. Tetraethyl orthosilicate (TEOS) derived silica sols were cross-linked with an ethoxysilylated 4-armed macromer, pentaerythritol ethoxylate and processed into macroporous scaffolds with defined pore structure by indirect rapid prototyping. Triethyl phosphate (TEP) was shown to function as silica sol solvent. In a first approach, we investigated the integration of 1 to 10% CaCl in order to test the hypothesis that small CaCl amounts can be physically entrapped and slowly released from hybrid glass scaffolds. With 5 and 10% CaCl we observed an extensive burst release, whereas slightly improved release profiles were found for lower Calcium(II) contents. In contrast, introduction of melt-derived bioactive 45S5 glass microparticles (BG-MP) into the hybrid glass scaffolds as another Calcium(II) source led to an approximately linear release of Calcium(II) in Tris(hydroxymethyl)aminomethane (TRIS) buffer over 12 weeks. pH increase caused by BG-MP could be controlled by their amount integrated into the scaffolds. Compression strength remained unchanged compared to scaffolds without BG-MP. In cell culture medium as well as in simulated body fluid, we observed a rapid formation of a carbonated hydroxyapatite layer on BG-MP containing scaffolds. However, this mineral layer consumed the released Calcium(II) ions and prevented an additional increase in Calcium(II) concentration in the cell culture medium. Cell culture studies on the different scaffolds with osteoblast-like SaOS-2 cells as well as bone marrow derived mesenchymal stem cells (hMSC) did not show any advantages concerning osteogenic differentiation due to the integration of BG-MP into the scaffolds. Nonetheless, via the formation of a hydroxyapatite layer and the ability to control the pH increase, we speculate that implant integration in vivo and bone regeneration may benefit from this concept.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764395PMC
http://dx.doi.org/10.3390/pharmaceutics12121192DOI Listing

Publication Analysis

Top Keywords

hybrid glass
16
glass scaffolds
16
cell culture
12
scaffolds
10
bone tissue
8
implant integration
8
10% cacl
8
culture medium
8
hydroxyapatite layer
8
bg-mp scaffolds
8

Similar Publications

Aim: Clinical and radiographic evaluation of SDF versus MTA as indirect pulp capping agents in deeply carious first permanent molars.

Methodology: This study was conducted on (30) first permanent molars indicated for indirect pulp capping (IPC) randomly allocated to either SDF or MTA groups (n = 15). The molars were finally restored with glass hybrid glass ionomer restoration.

View Article and Find Full Text PDF

Development of a sandwich-type electrochemical DNA sensor based on CeO/AuPt nanoprobes for highly sensitive detection of hepatitis B virus DNA.

Bioelectrochemistry

January 2025

The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China. Electronic address:

To provide accurate diagnostic evidence for early hepatitis B virus (HBV) infection-related diseases, this study targeted HBV DNA as an analyte, where a sandwich-type electrochemical DNA sensor based on gold nanoparticles/reduced graphene oxide (Au NPs/ERGO) and cerium oxide/gold-platinum nanoparticles (CeO/AuPt NPs) was constructed. Au NPs/ERGO composite nanomaterials were first synthesized on the surface of a glass carbon electrode using electrochemical co-reduction, which significantly improved the specific surface area and electrical conductivity of the electrode. Further specific hybridization of target HBV-DNA was performed by combining capture probe DNA (S1-DNA) bound to AuNPs/ERGO with CeO/AuPt modified signal probe DNA (S2-DNA).

View Article and Find Full Text PDF

Background: This study aimed to comparatively evaluate the effects of different cavity conditioners on internal adaptation (IA) of glass ionomer-based restorative materials applied to primary teeth.

Methods: 80 extracted primary second molar teeth were randomly assigned to four different cavity conditioner groups [10% polyacrylic acid, 20% polyacrylic acid, 17% ethylene diamine tetraacetic acid (EDTA), 35% phosphoric acid]. Class V cavities were prepared on the buccal surfaces and relevant cavity conditioners were applied, and the samples in each cavity conditioner group were randomly assigned to glass hybrid (GHR) or conventional glass ionomer restoratives (CGIR).

View Article and Find Full Text PDF

In this work, twin-screw extruder and compression moulding techniques were utilized to fabricate polymer blends: polypropylene (PP), polybutadiene (PB), and composites using glass fibre (GF) and flax fibre (FF). During fabrication, the polymer ratios maintained between PP and PB were 90:10, 80:20, and 70:30. Likewise, the composites were fabricated by varying the ratios between the PP, PB, and GF, which were 90PP:10PB:10GF, 80PP:20PB:10GF, and 70PP:30PB:10GF.

View Article and Find Full Text PDF

Fabrication of Polyurethane-Polyacrylate Hybrid Latexes with High Organosilicon Content via Phase Inversion Emulsion Polymerization.

Molecules

December 2024

Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!