Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764760 | PMC |
http://dx.doi.org/10.3390/cells9122639 | DOI Listing |
Extracell Vesicles Circ Nucl Acids
September 2024
Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites.
View Article and Find Full Text PDFUnlabelled: We report here transport of the Epidermal Growth Factor Receptor (EGFR), Insulin Receptor, 7-pass transmembrane receptor Smoothened, and 13-pass Sodium-iodide symporter to extracellular vesicles (EVs) for structural and functional studies. Mass spectrometry confirmed the transported proteins as the most abundant in EV membranes, and the presence of many receptor-interacting proteins demonstrates the utility of EVs for characterizing membrane protein interactomes. Cryo-electron tomography of EGFR-containing EVs reveals that EGFR forms clusters in the presence of EGF with a ∼3 nm gap between the inner membrane and cytoplasmic density.
View Article and Find Full Text PDFJ Extracell Vesicles
November 2024
Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Nanomaterials (Basel)
October 2024
School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China.
J Biomed Sci
October 2024
Laboratory of Biotechnology and Nanomedicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
Background: Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!