species are facultative intracellular bacteria that cause brucellosis, a zoonotic world-wide disease. The live attenuated Rev.1 vaccine strain is widely used for the control of brucellosis in the small ruminant population. However, Rev.1 induces antibodies against the O-polysaccharide (O-PS) of the smooth lipopolysaccharide thus, it is difficult to differentiate between infected and vaccinated animals. Hence, rough strains lacking the O-PS have been introduced. In the current study, we conducted a comprehensive comparative analysis of the genome sequence of two natural Rev.1 rough strains, isolated from sheep, against that of 24 Rev.1 smooth strains and the virulent reference strain 16M. We identified and characterized eight vital mutations within highly important genes associated with lipopolysaccharide (LPS) biosynthesis and virulence, which may explain the mechanisms underlying the formation of the Rev.1 rough phenotype and may be used to determine the mechanism underlying virulence attenuation. Further complementation studies aimed to estimate the specific role of these mutations in affecting morphology and virulence will serve as a basis for the design of new attenuated vaccines for animal immunization against brucellosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762576PMC
http://dx.doi.org/10.3390/ijms21249341DOI Listing

Publication Analysis

Top Keywords

rev1 vaccine
8
genes associated
8
lps biosynthesis
8
biosynthesis virulence
8
rough strains
8
rev1 rough
8
rev1
6
genomic analysis
4
analysis natural
4
rough
4

Similar Publications

Brucellosis is a neglected zoonotic disease affecting livestock and humans that remains endemic in Ethiopia. Despite its prevalence, only a few studies have identified species circulating in livestock in the country. This study aimed to determine the species responsible for infections in livestock in the Afar region of Ethiopia and characterize the isolates using whole-genome single nucleotide polymorphism (wgSNP) analysis and in silico multi-locus sequence typing (MLST).

View Article and Find Full Text PDF

Brucellosis is a bacterial zoonosis caused by the genus , which mainly affects domestic animals. In these natural hosts, brucellae display a tropism towards the reproductive organs, such as the placenta, replicating in high numbers and leading to placentitis and abortion, an ability also exerted by the live-attenuated Rev1 strain, the only vaccine available for ovine brucellosis. It is broadly accepted that this tropism is mediated, at least in part, by the presence of certain preferred nutrients in the placenta, particularly erythritol, a polyol that is ultimately incorporated into the central carbon metabolism via two reactions dependent on transaldolase (Tal) or fructose-bisphosphate aldolase (Fba).

View Article and Find Full Text PDF

Brucellosis is an economically important zoonotic disease affecting humans, livestock, and wildlife health globally and especially in Africa. Brucella abortus and B. melitensis have been isolated from human, livestock (cattle and goat), and wildlife (sable) in South Africa (SA) but with little knowledge of the population genomic structure of this pathogen in SA.

View Article and Find Full Text PDF

Brucellosis, caused by various Brucella species, poses a significant threat to global public health and livestock industries. This study aims to fill the knowledge gap concerning the presence of Brucella spp. in rodents on livestock farms in Iran.

View Article and Find Full Text PDF

Development of a Plant-Expressed Subunit Vaccine against Brucellosis.

Microorganisms

May 2024

Future Production and Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.

Brucellosis is an important bacterial disease of livestock and the most common zoonotic disease. The current vaccines are effective but unsafe, as they result in animal abortions and are pathogenic to humans. Virus-like particles are being investigated as molecular scaffolds for foreign antigen presentation to the immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!