Cataract surgery is the commonest ophthalmic surgery worldwide. The replacement of the diseased lens with a synthetic one (intraocular lens-IOL) remains the treatment of choice, despite its potential complications that include infection, inflammation and posterior capsule opacification. The potential for drug delivery via the IOL has been researched extensively over a period of twenty-five years, yet there is very limited progress in transferring the findings from research to everyday practice. The objective of this review is to assess the progress made in the field of IOL lens modifications and drug delivery systems over the past five years. Thirty-six studies that were conducted during the past five years were identified and deemed suitable for inclusion. They were grouped in three broad categories, studies that described new methods for loading a drug onto the IOL, assessment of the effects of drugs that were loaded to the IOL and studies that assessed the effects of non-pharmaceutical modifications of IOLs. While considerable progress is continually being made with regard to methods and materials, there is still little capitalization upon these research studies, with no commercially available IOL-based drug delivery system being available. Close cooperation between researchers in basic sciences (chemistry, physics, materials science and pharmacy), clinical researchers, IOL manufacturers and the pharmaceutical industry is an important prerequisite for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762578PMC
http://dx.doi.org/10.3390/ph13120448DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
lens modifications
8
modifications drug
8
delivery systems
8
cataract surgery
8
drug
5
iol
5
critical appraisal
4
appraisal developments
4
developments intraocular
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells.

View Article and Find Full Text PDF

β-Glucuronidase-Responsive Albumin-Binding Prodrug of Colchicine-Site Binders for Selective cancer Therapy.

ChemMedChem

January 2025

UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers, groupe « Systèmes Moléculaires Programmés », Faculté des Sciences Fondamentales et Appliquées, 4 rue Michel Brunet, TSA 51106, 86073, Poitiers, FRANCE.

The development of novel therapeutic strategies enabling the selective destruction of tumors while sparing healthy tissues is of great interest to improve the efficacy of cancer chemotherapy. In this context, we designed a β-glucuronidase-responsive albumin-binding prodrug programmed to release a potent Isocombretastatin A-4 analog within the tumor microenvironment. When injected at a non-toxic dose in mice bearing orthotopic triple-negative mammary tumors, this prodrug produced a significant anticancer activity, therefore offering a valuable alternative to the systemic administration of the parent drug.

View Article and Find Full Text PDF

Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!