A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sulforaphane Protects Piglet Brains from Neonatal Hypoxic-Ischemic Injury. | LitMetric

Sulforaphane Protects Piglet Brains from Neonatal Hypoxic-Ischemic Injury.

Dev Neurosci

Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA,

Published: October 2021

The striatal, primary sensorimotor cortical, and thalamic neurons are highly vulnerable to hypoxia-ischemia (HI) in term newborns. In a piglet model of HI that exhibits similar selective regional vulnerability, we tested the hypothesis that early treatment with sulforaphane, an activator of the Nrf2 transcription factor, protects vulnerable neurons from HI injury. Anesthetized piglets (aged 3-7 days) were subjected to 45 min of hypoxia and 7 min of airway occlusion. At 15 min after resuscitation, the piglets received intravenous vehicle or sulforaphane. At 4 days of recovery, the density of viable neurons in the putamen of vehicle-treated piglets was 31 ± 34% (±SD) that of sham-operated controls. Treatment with sulforaphane significantly increased viability to 77 ± 31%. In the sensorimotor cortex, neuronal viability was also increased; it was 59 ± 35% in the vehicle-treated and 89 ± 15% in the sulforaphane-treated animals. Treatment with sulforaphane increased the nuclear Nrf2 and γ-glu-tamylcysteine synthetase expression at 6 h of recovery in these regions. We conclude that systemic administration of sulforaphane 15 min after HI can induce the translocation of Nrf2 to the nucleus, increase expression of an enzyme involved in glutathione synthesis, and salvage neurons in the highly vulnerable putamen and sensorimotor cortex in a large-animal model of HI. Therefore, targeting Nrf2 activation soon after recovery from HI is a feasible approach for neuroprotection in the newborn brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7864873PMC
http://dx.doi.org/10.1159/000511888DOI Listing

Publication Analysis

Top Keywords

treatment sulforaphane
12
neurons highly
8
highly vulnerable
8
sulforaphane increased
8
sensorimotor cortex
8
sulforaphane
6
sulforaphane protects
4
protects piglet
4
piglet brains
4
brains neonatal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!