In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2020.126653 | DOI Listing |
Med J Armed Forces India
December 2024
Senior Medical Officer (Dermatology), Govt of NCT of Delhi, Bhagwan Mahavir Hospital, Pitampura, Delhi, India.
Background: Chronic venous insufficiency (CVI) causes cutaneous changes. This prospective observational study reveals dermoscopic findings in CVI.
Methods: Successive CVI patients of ≥18 years were included in the study.
Food Chem
December 2024
Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
The study investigates the composition and properties of unpopped and expanded popcorn, analyzing monosaccharides, protein, amylose, polyphenols, physical traits, crystallinity, and in vitro digestion. Unpopped grains had high glucose content (mainly from starch), which decreased by 20 % in expanded popcorn, especially in black and red A samples. Expanded grains showed higher protein levels (up to 15 %), particularly in red B and yellow samples.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany.
We examined how urban environments affect the abundance, proportion, and diversity of plumage color morphs in feral pigeons. Five major plumage color morphs (black, blue, white, red, and mixed) were counted in sixty 25-ha plots in Poznań City (Poland). Generalized additive models were used to study the correlations among abundance, proportion of morphs, and environmental factors.
View Article and Find Full Text PDFSci Rep
December 2024
The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland.
Light-emitting diode (LED) lamps are efficient elicitors of secondary metabolites. To investigate the influence of LED light on steviol glycosides (SGs) and phenolic compounds biosynthesis, stevia shoots were cultured under the following LED lights: white-WL, blue-B, red-R, 70% red and 30% blue-RB, 50% UV, 35% red and 15% blue-RBUV, 50% green, 35% red and 15% blue-RBG, 50% yellow, 35% red and 15% blue-RBY, 50% far-red, 35% red and 15% blue-RBFR and white fluorescent light (WFl, control). RBG light stimulated shoots' biomass production.
View Article and Find Full Text PDFDermatopathology (Basel)
November 2024
Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The dermoscopic rainbow pattern (RP), also known as polychromatic pattern, is characterized by a multicolored appearance, resulting from the dispersion of polarized light as it penetrates various tissue components. Its separation into different wavelengths occurs according to the physics principles of scattering, absorption, and interference of light, creating the optical effect of RP. Even though the RP is regarded as a highly specific dermoscopic indicator of Kaposi's sarcoma, in the medical literature, it has also been documented as an atypical dermoscopic finding of other non-Kaposi skin entities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!