We tested the hypothesis that the ubiquity of marine meiofaunal nematodes and their indiscriminate passive dispersal create assemblages that are less limited by its environment; whereas the relatively smaller population sizes of macrofauna, associated with their ability to track environmental conditions before settlement, renders their distribution more environmentally-restricted. We compared the empirical distribution of macrofauna and nematode species with that of communities simulated under different assumptions of selection (e.g. environmental filtering) and non-selection (e.g. dispersal limitation) processes. Selection processes were the prime driver of both meio- and macrofauna assemblages, with rare species strongly contributing to this component. The total number of species explained by non-selection processes was 27% higher in nematodes than in macrofauna. Our results underline the importance of a species-level approach to determine the contribution of selection and non-selection assembly processes. Moreover, they highlight the important yet overlooked role of dispersal and stochastic processes in determining species dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2020.105223DOI Listing

Publication Analysis

Top Keywords

selection processes
8
processes
6
relative contribution
4
non-selection
4
contribution non-selection
4
selection
4
non-selection selection
4
processes marine
4
marine benthic
4
benthic assemblages
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!