Protein tyrosine kinase-7 (PTK7), as an important membrane receptor, regulates various cellular activities, including cell polarity, movement, migration, and invasion. Although lots of research studies focused on revealing its functions from the aspect of the expression of the gene and protein are present, the relationship between the spatial distribution at the single-molecule level and the function remains unclear. Through combining aptamer probe labeling and super-resolution imaging technology, after verifying the specificity and superiority of the aptamer probe, a more significant clustering distribution of PTK7 is found on the MCF10A cell basal membrane than on the apical membrane, which is thought to be related to their specific functions on different membranes. By exploring the relationship between the assembly of PTK7 and lipid rafts, actin cytoskeleton, and carbohydrate chains on the membrane, the unique distribution of PTK7 on disparate membranes is revealed to be probably because of the varied dominant position of these three factors. These findings present the detailed spatial information of PTK7 and the related potential organization mechanism on the cell membrane, which will facilitate a better understanding of the relationship between the molecular assembly and its function, as well as the overall structure of the cell membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c03630 | DOI Listing |
J Egypt Natl Canc Inst
December 2024
Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
Background: Lung cancer is a form of cancer that is responsible for the largest incidence of deaths attributed to cancer worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent of all the subtypes of the disease. Treatment with tyrosine kinase inhibitors (TKI) may help some people who have been diagnosed with non-small cell lung cancer.
View Article and Find Full Text PDFExp Eye Res
December 2024
Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Hualien, 970, Taiwan, ROC.
J Hematol Oncol
December 2024
Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
Semin Respir Crit Care Med
December 2024
Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio.
Neuromuscular disorders can cause respiratory impairment by affecting the muscle fibers, neuromuscular junction, or innervation of respiratory muscles, leading to significant morbidity and mortality. Over the past few years, new disease-modifying therapies have been developed and made available for treating different neuromuscular disorders. Some of these therapies have remarkable effectiveness, resulting in the prevention and reduction of respiratory complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!