Anatomy of a twin DNA replication factory.

Biochem Soc Trans

DNA Replication Laboratory, The Rockefeller University, New York, New York, U.S.A.

Published: December 2020

The replication of DNA in chromosomes is initiated at sequences called origins at which two replisome machines are assembled at replication forks that move in opposite directions. Interestingly, in vivo studies observe that the two replication forks remain fastened together, often referred to as a replication factory. Replication factories containing two replisomes are well documented in cellular studies of bacteria (Escherichia coli and Bacillus subtilis) and the eukaryote, Saccharomyces cerevisiae. This basic twin replisome factory architecture may also be preserved in higher eukaryotes. Despite many years of documenting the existence of replication factories, the molecular details of how the two replisome machines are tethered together has been completely unknown in any organism. Recent structural studies shed new light on the architecture of a eukaryote replisome factory, which brings with it a new twist on how a replication factory may function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752080PMC
http://dx.doi.org/10.1042/BST20200640DOI Listing

Publication Analysis

Top Keywords

replication factory
12
replication
8
factory replication
8
replisome machines
8
replication forks
8
replication factories
8
replisome factory
8
factory
5
anatomy twin
4
twin dna
4

Similar Publications

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Polyomavirus BK (BKPyV)-associated nephropathy (BKPyV-nephropathy) remains a significant cause of premature kidney allograft failure. In the absence of effective antiviral treatments, current therapeutic approaches rely on immunosuppression (IS) reduction, possibly at the risk of inducing alloimmunity. Therefore, we sought to explore the long-term effects of a tailored viro-immunologic surveillance and treatment program for BKPyV on the development of alloimmunity and kidney graft outcome.

View Article and Find Full Text PDF

An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.

View Article and Find Full Text PDF

Understanding kinase action requires precise quantitative measurements of their activity . In addition, the ability to capture spatial information of kinase activity is crucial to deconvolute complex signaling networks, interrogate multifaceted kinase actions, and assess drug effects or genetic perturbations. Here we developed a proteomic kinase activity sensor platform (ProKAS) for the analysis of kinase signaling using mass spectrometry.

View Article and Find Full Text PDF

Nucleocapsid assembly drives Ebola viral factory maturation and dispersion.

Cell

December 2024

Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:

Article Synopsis
  • Viral factories (VFs) are membrane-less organelles where negative-sense RNA viruses, like Ebola, replicate and encapsidate their genomes.
  • Using advanced imaging techniques, researchers observed how viral nucleocapsids (NCs) change from loose formations to compact structures during the infection process.
  • The study found that as VFs mature, they become less spherical and more integrated with cellular components, which likely aids in the transportation of NCs for virus budding.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!