The septuple-atomic-layer VSi2P4 with the same structure of experimentally synthesized MoSi2N4 is predicted to be a spin-gapless semiconductor (SGS) with the generalized gradient approximation (GGA). In this work, the biaxial strain is applied to tune the electronic properties of VSi2P4, and it spans a wide range of properties upon increasing the strain from a ferromagnetic metal (FMM) to SGS to a ferromagnetic semiconductor (FMS) to SGS to a ferromagnetic half-metal (FMHM). Due to broken inversion symmetry, the coexistence of ferromagnetism and piezoelectricity can be achieved in FMS VSi2P4 with the strain range of 0% to 4%. The calculated piezoelectric strain coefficients d11 for 1%, 2% and 3% strains are 4.61 pm V-1, 4.94 pm V-1 and 5.27 pm V-1, respectively, which are greater than or close to a typical value of 5 pm V-1 for bulk piezoelectric materials. Finally, similar to VSi2P4, the coexistence of piezoelectricity and ferromagnetism can be realized by strain in the VSi2N4 monolayer. Our works show that VSi2P4 in the FMS phase with intrinsic piezoelectric properties can have potential applications in spin electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp05273fDOI Listing

Publication Analysis

Top Keywords

piezoelectricity ferromagnetism
8
biaxial strain
8
sgs ferromagnetic
8
strain
6
vsi2p4
5
coexistence intrinsic
4
intrinsic piezoelectricity
4
ferromagnetism induced
4
induced small
4
small biaxial
4

Similar Publications

Atomically resolved scanning tunneling microscope (STM) capable of in situ rotation in a narrow magnet bore has become a long-awaited but challenging technique in the field of strong correlation studies since it can introduce the orientation of the strong magnetic field as a control parameter. This article presents the design and functionality of a piezoelectrically driven rotatable STM (RSTM), operating within a 12 T cryogen-free magnet and achieving a base temperature below 1.8 K, along with spectroscopic capabilities.

View Article and Find Full Text PDF

This study estimates the performance of a piezoelectric energy harvester (PEH) with rotatable external magnets from the viewpoint of global dynamics. According to static analysis of the PEH dynamic system, the monostable and bistable potential wells are configured under different values of the inclined angle of the external magnets. In the monostable case, the method of multiple scales is applied for the analysis of periodic responses, while the extended averaging method and the Melnikov method are utilized to analyze the periodic and chaotic responses in the bistable case.

View Article and Find Full Text PDF

This work proposes a new rotary piezoelectric energy harvester using magnetic excitation inspired by the fan blade. The configuration and operating principle of the harvester are introduced. Then, the equivalent nonlinear model of the piezoelectric beam is established based on the Euler-Bernoulli theory and the Rayleigh-Ritz method.

View Article and Find Full Text PDF

Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles.

Nanotechnology

December 2024

School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom.

Magnetic domain walls and skyrmions in thin film micro- and nanostructures have been of interest to a growing number of researchers since the turn of the millennium, motivated by the rich interplay of materials, interface and spin physics as well as by the potential for applications in data storage, sensing and computing. This review focuses on the manipulation of magnetic domain walls and skyrmions by piezoelectric strain, which has received increasing attention recently. Static strain profiles generated, for example, by voltage applied to a piezoelectric-ferromagnetic heterostructure, and dynamic strain profiles produced by surface acoustic waves, are reviewed here.

View Article and Find Full Text PDF

Multiferroic properties and giant piezoelectric effect of a 2D Janus WOF monolayer.

Phys Chem Chem Phys

October 2024

School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China.

Materials possessing both ferroelectricity and ferromagnetism are regarded as ideal candidates for electronic devices, such as nonvolatile memories. Based on first-principles calculations, we systematically studied the crystal structure, electronic structure as well as magnetic, piezoelectric and ferroelectric properties of a two-dimensional van der Waals WOF monolayer material. The WOF monolayer was found to possess a robust square crystal structure, exhibiting exceptional stability and mechanical resilience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!