is one of the dominant species in the Taklimakan Desert highway shelterbelt, the litter of which plays an important role in carbon cycling. After litter addition, we carried out a laboratory incubation experiment to investigate the dynamics of soil CO emission, soil organic carbon (SOC), soluble organic carbon (DOC), pH, and electrical conductivity (EC) under the condition of salt water (SW) and fresh water (FW) with field water holding capacity of 25%, 50%, 75%, and 100%. The results showed that saline water irrigation had an inhibitory effect on soil CO emission. Under the four soil water content treatments, the cumulative CO emission of freshwater irrigation increased by 1.9%-29.1% compared with that of saline irrigation. Cumulative soil CO emissions increased with increasing soil water content. With litter addition, SOC decreased rapidly in the early stage, then gradually increased, and finally tended to be stable. The DOC contents of each treatment following the incubation increased by 41.3%-92.4% compared with that before the incubation. At the end of incubation, soil pH of each treatment increased by 0.20-0.35. The EC increased with the increases of soil water content. Under the four water content conditions and compared with the situation before the incubation, the EC values irrigated with SW increased by 0.11-0.79 mS·cm, while those with FW increased or decreased at the end of incubation. Cumulative soil CO emission was positively correlated with SOC, DOC, and pH, but not with soil water content. Both saline irrigation and lower water content could inhibit CO emission of aeolian sandy soil under litter addition, while EC was significantly affected by the quality of irrigation water and soil water content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202011.003 | DOI Listing |
Bot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFSci Rep
January 2025
College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China.
Internal instability of embankment soils under seepage can occur in two distinct ways: suffusion and suffosion. Suffusion involves the removal of fine particles from the matrix without causing significant disturbance to the soil skeleton, while suffosion is characterized by the movement of fine particles accompanied by skeleton collapse or deformation. In terms of dam safety, suffosion poses a greater threat than suffusion.
View Article and Find Full Text PDFSci Rep
January 2025
Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.
Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China. Electronic address:
This study aimed to probe the influence of amylose in starch granules on starch modification. Part of the amylose from sorghum starch was removed through warm water leaching, and the samples were then microwaved. The effects of treatments on starch structure, physicochemical properties, and digestibility were researched.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!