Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Nicotine Metabolite Ratio (NMR; 3-hydroxycotinine/cotinine), a highly heritable index of nicotine metabolic inactivation by the CYP2A6 enzyme, is associated with numerous smoking behaviors and diseases, as well as unique cessation outcomes. However, the NMR cannot be measured in nonsmokers, former smokers, or intermittent smokers, for example, in evaluating tobacco-related disease risk. Traditional pharmacogenetic groupings based on CYP2A6 * alleles capture a modest portion of NMR variation. We previously created a CYP2A6 weighted genetic risk score (wGRS) for European (EUR)-ancestry populations by incorporating independent signals from genome-wide association studies to capture a larger proportion of NMR variation. However, CYP2A6 genetic architecture is unique to ancestral populations. In this study, we developed and replicated an African-ancestry (AFR) wGRS, which captured 30-35% of the variation in NMR. We demonstrated model robustness against known environmental sources of NMR variation. Furthermore, despite the vast diversity within AFR populations, we showed that the AFR wGRS was consistent between different US geographical regions and unaltered by fine AFR population substructure. The AFR and EUR wGRSs can distinguish slow from normal metabolizers in their respective populations, and were able to reflect unique smoking cessation pharmacotherapy outcomes previously observed for the NMR. Additionally, we evaluated the utility of a cross-ancestry wGRS, and the capacity of EUR, AFR, and cross-ancestry wGRSs to predict the NMR within stratified or admixed AFR-EUR populations. Overall, our findings establish the clinical benefit of applying ancestry-specific wGRSs, demonstrating superiority of the AFR wGRS in AFRs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8187466 | PMC |
http://dx.doi.org/10.1002/cpt.2135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!