Roadside vegetation provides a multitude of ecosystem services, including pollutant remediation, runoff reduction, wildlife habitat, and aesthetic scenery. Establishment of permanent vegetation along paved roads after construction can be challenging, particularly within 1 m of the pavement. Adverse soil conditions could be one of the leading factors limiting roadside vegetation growth. In this study, we assessed soil physical and chemical properties along a transect perpendicular to the road at six microtopographic positions (road edge, shoulder, side slope, ditch, backslope, and field edge) along two highway segments near Beaver Crossing and Sargent, NE. At the Beaver Crossing site, Na concentration was 81 times, exchangeable Na 66 times, and cone index (compaction parameter) six times higher at the road-edge position (closest to the paved road and with sparse vegetation) compared to positions with abundant vegetation (ditch or field edge). At the Sargent site, Na concentration was 111 times, exchangeable Na 213 times, and cone index up to two times higher at the road-edge position compared with ditch or field-edge positions. Likewise, electrical conductivity was higher and macroaggregation and water infiltration were lower at the road edge than at the ditch or field-edge positions. Soil properties improved with increasing distance from the road. Exchangeable Na percentage and cone index at the road-edge position exceeded threshold levels for the growth of sensitive plants. Thus, high Na concentration and increased compaction at the road edge appear to be the leading soil properties limiting vegetation establishment along Nebraska highways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20184 | DOI Listing |
Environ Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW 2795, Australia.
Soil colour is a key indicator of soil health and the associated properties. In agriculture, soil colour provides farmers and advises with a visual guide to interpret soil functions and performance. Munsell colour charts have been used to determine soil colour for many years, but the process is fallible, as it depends on the user's perception.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.
The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.
View Article and Find Full Text PDFFoods
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Universidad de Sevilla, 41012 Seville, Spain.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of macroalgae powder (ULP) as an active additive in crab () chitosan-based films for natural food packaging. Films with ULP concentrations of 0.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.
Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!