Inflammation of alveolar macrophages is the primary pathological factor leading to acute lung injury (ALI), and NF‑κB activation and HO‑1 inhibition are widely involved in inflammation. Salusin‑β has been reported to contribute to the progression of the inflammatory response, but whether salusin‑β could regulate inflammation in lipopolysaccharide (LPS)‑induced ALI remains unknown. The present study aimed to investigate the role of salusin‑β in LPS‑induced ALI and to uncover the potential underlying mechanisms. Sprague‑Dawley rats were subjected to LPS administration, and then pathological manifestations of lung tissues, inflammatory cytokines levels in bronchoalveolar lavage fluid (BALF) and expression of salusin‑β in macrophages of lung tissues were assessed. NR8383 cells with or without salusin‑β knockdown were treated with LPS, and then the concentration of inflammatory cytokines, and the expression of high mobility group box‑1 (HMGB1), NF‑κB signaling molecules and heme oxygenase‑1 (HO‑1) levels were detected. The results showed that LPS caused injury of lung tissues, increased the levels of proinflammatory cytokines in BALF, and led to higher expression of salusin‑β or macrophages in lung tissues of rats. experiments, LPS also upregulated salusin‑β expression in NR8383 cells. Knockdown of salusin‑β using short hairpin (sh)RNA inhibited the LPS‑induced generation of inflammatory cytokines. LPS also enhanced HMGB1, phosphorylated (p)‑IκB and p‑p65 expression, but reduced HO‑1 expression in both lung tissues and NR8383 cells, which were instead inhibited by the transfection of sh‑salusin‑β. In addition, knockdown of HO‑1 using shRNA reversed the inhibitory effect of sh‑salusin‑β on the LPS‑induced generation of inflammatory cytokines, activation of NF‑κB signaling and inactivation of HO‑1. In conclusion, this study suggested that knockdown of salusin‑β may inhibit LPS‑induced inflammation in alveolar macrophages by blocking NF‑κB signaling and upregulating HO‑1 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751479PMC
http://dx.doi.org/10.3892/mmr.2020.11766DOI Listing

Publication Analysis

Top Keywords

lung tissues
20
inflammatory cytokines
16
alveolar macrophages
12
nr8383 cells
12
nf‑κb signaling
12
salusin‑β
9
salusin‑β knockdown
8
inflammation alveolar
8
lps‑induced ali
8
expression salusin‑β
8

Similar Publications

CT-sensitized nanoprobe for effective early diagnosis and treatment of pulmonary fibrosis.

J Nanobiotechnology

January 2025

Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.

Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.

View Article and Find Full Text PDF

Cecropin AD ameliorates pneumonia and intestinal injury in mice with mycoplasma pneumoniae by mediating gut microbiota.

BMC Vet Res

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a rapidly progressive interstitial lung disease of unknown pathogenesis with no effective treatment currently available. Given the regulatory roles of lncRNAs (TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3), miRNAs (miR-218-5p, miR-126-3p, miR-200a-3p, miR-18a-5p, miR-29a-3p), and their target protein-coding genes (PTEN, TGFB2, FOXO3, KEAP1) in the TGF-β/SMAD3, Wnt/β-catenin, focal adhesion, and PI3K/AKT signaling pathways, we investigated the expression levels of selected genes in peripheral blood mononuclear cells (PBMCs) and lung tissue from patients with IPF. Lung tissue and blood samples were collected from 33 newly diagnosed, treatment-naive patients and 70 healthy controls.

View Article and Find Full Text PDF

The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.

View Article and Find Full Text PDF

This study demonstrates the analytical and clinical validity of the approved (United States and Japan) plasma-based Guardant360 companion diagnostic (CDx) test for selecting patients with human epidermal growth factor receptor 2 (HER2 [ERBB2])-mutated (HER2m) non-small-cell lung cancer (NSCLC) for trastuzumab deruxtecan (T-DXd) treatment. Concordance between the Guardant360 CDx test and the plasma-based AVENIO ctDNA Expanded Kit Assay (AVENIO), as well as the tissue-based clinical trial assays (CTAs) was investigated. Clinical utility was assessed by comparing T-DXd clinical efficacy results of patients in DESTINY-Lung01/02 who tested positive for HER2 mutations using the Guardant360 CDx test to benchmark efficacy results from DESTINY-Lung01/02.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!